Мальчик, который не переставал расти… и другие истории про гены и людей - Эдвин Кёрк
Шрифт:
Интервал:
Три миллиарда оснований ДНК — это ужасно много. Для наглядности — вот фрагмент генетического кода человека:
Это один из моих любимых участков генома — кусочек гена TBX20, сыгравшего звездную роль в моей диссертации. Если печатать тем же шрифтом с тем же интервалом на бумаге формата A4 (с одной стороны), то для распечатки всего человеческого генома понадобится 781 250 листов. Допустим, каждый лист толщиной 0,1 мм; тогда вам понадобится стопка бумаги высотой более 78 м — ниже, чем статуя Свободы, но выше, чем Сиднейский оперный театр. Без ключа к расшифровке, конечно, все это будет лишь набором ничего не значащих букв. С ключом эта стопка бумаги откроет несметные научные сокровища.
Так что же является ключом? И что скрывается в геноме? Как выясняется, ключ тут не один, здесь нужен скорее целый набор ключей. ДНК способна поведать много историй, если уметь их читать.
Мы уже говорили в предыдущей главе, что наши хромосомы образуют пары[14] просто потому, что половину генетической информации вы получаете от мамы, а половину — от папы. В свою очередь вы передаете каждому из детей также половину своих хромосом. Таким образом, одна копия первой хромосомы получена от мамы, другая — от папы, и так со всеми хромосомами. Первая хромосома самая крупная. Она состоит примерно из 250 млн нуклеотидов, и на ней располагается свыше 2000 генов. Самая маленькая, 21-я, хромосома состоит менее чем из 50 млн нуклеотидов и содержит только пару сотен генов. Скромная Y-хромосома лишь немногим длиннее, чем 21-я, но в ней всего около 50 генов.
Кроме того, в клетке вне клеточного ядра тоже есть ДНК: у нас имеется второй геном, совсем крошечный (всего 16 569 нуклеотидов и 37 генов). Он находится в структурах под названием митохондрии — о них речь пойдет чуть позже.
Что касается генов, то о них вы, без сомнения, слышали, ведь это самые известные компоненты генома. Как уже говорилось, они играют роль инструкции, по которой клетка синтезирует белки, которые, в свою очередь, выполняют множество сложных задач, необходимых клетке, чтобы выжить и принести пользу вашему организму. Однако те участки генов, которые транслируются для синтеза белков, составляют лишь около 1–2 % генома.
Ученые до сих пор спорят о том, для чего нужна остальная часть генома и насколько она нужна. Среди некодирующих отрезков есть такие, которые, безусловно, полезны и важны. Например, центромера — место перетяжки на хромосоме — необходима для того, чтобы при делении клетки копии хромосомы направлялись куда им положено. Сбой этого процесса ничего хорошего не сулит. На концах хромосом расположены теломеры — структуры, образующие защитный колпачок. Возможно, вам приходилось слышать песню британского комика Бернарда Бресслоу о том, для чего нужны пятки:
Хромосомы, как известно, в носках не ходят, но, как и ногам, износ концов им вреден. По мере вашего старения теломеры и в самом деле изнашиваются, понемногу укорачиваясь с каждым делением клетки. При многих формах рака они становятся существенно короче, чем в норме, или вообще исчезают, так что концы хромосом оголяются и становятся уязвимыми для повреждений. Как ни странно, затем следует восстановление теломер: когда клетки перерождаются в злокачественные, их хромосомы обретают новые, устойчивые теломеры. Отчасти поэтому раковые клетки становятся «бессмертными».
Хотя участки генов, кодирующие белки, занимают всего 1–2 % генома, сами гены составляют примерно четверть генома. Секрет этого несовпадения в том, что большинство генов представляет собой смесь двух разных типов нуклеотидных последовательностей — интронов и экзонов. Экзоны кодируют белки, то есть их последовательности указывают, из каких аминокислот синтезировать белок, а также когда начинать и завершать синтез. Напротив, интроны ничего не кодируют, и, хотя у них, несомненно, есть какая-то функция, нам до сих пор не вполне понятно, какая именно[15]. Интроны могут быть поистине огромными — многотысячные цепочки нуклеотидов. Иногда они настолько велики, что целый ген может уместиться внутри интрона другого гена, обычно направленного в противоположную сторону, на соседней нити ДНК. Двойная спираль — улица с двусторонним движением.
В приведенном выше фрагменте гена TBX20 можно увидеть как экзоны, так и интроны. Жирным шрифтом выделены экзоны, остальное — интроны. Можно увидеть даже кое-какие инструкции по работе генома, записанные прямо здесь в последовательности ДНК. В начале каждого интрона стоят нуклеотиды ГТ, в конце каждого интрона — АГ. Вместе ГТ и АГ образуют ключевую часть указания для клеточных механизмов, в котором сообщается: «Здесь интрон. Для белка не нужен — вырезать»[16].
Какой же процент человеческого генома действительно занят делом? По правде говоря, это пока еще не известно. В сентябре 2012 г. вышли одновременно 30 научных статей с результатами одного из крупнейших проектов — проекта ENCODE (ENCyclopedia Of DNA Elements — «Энциклопедия элементов ДНК»), являющегося дальнейшим развитием «Генома человека». Согласованное взаимодействие огромного числа ученых, благодаря которому сразу 30 статей вышло в свет, стало не менее удивительным достижением, чем сами научные данные, приведенные в этих публикациях. По утверждению участников исследовательской группы ENCODE, были раскрыты функции 80 % генома. Большая часть его, как предполагалось, занимается контролем функционирования остальных частей — довольно бюрократический образ клеточной биологии. Это заявление сразу вызвало немало критики, и споры все еще продолжаются. Недавно вышла статья, в которой утверждается, что функционально лишь 8 % генома. Вот это разброс! Не знаю, каков верный ответ на самом деле, но 8 %, по-моему, маловато, а 80 % — уже перебор.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!