Опционы. Разработка, оптимизация и тестирование торговых стратегий - Вадим Цудикман
Шрифт:
Интервал:
Экспоненциальная доходность соответствует средней геометрической доходности, приведенной к годовому масштабу.
Моменты времени, когда производятся измерения капитала, будем связывать с моментами экспирации опционов. В этом случае мы приходим к серии месячных прибылей и убытков. Пусть N – число месяцев в периоде, на котором производится бэктестинг стратегии. В линейном случае предполагается, что стартовый капитал каждого месяца равен Ei−1, а инвестируемый капитал всегда равен E0. Тогда прибыль i-го месяца pli = Ei − Ei−1, средняя прибыль за месяц средняя доходность доходность i-го месяца В экспоненциальном случае стартовый и инвестируемый капиталы для каждого месяца совпадают с конечным капиталом предыдущего месяца. О средней месячной прибыли говорить не имеет смысла, поскольку в каждом месяце инвестируется разная сумма. Доходность i-го месяца в качестве средней доходности экспоненциального случая разумно принимать среднюю геометрическую доходность
Для наборов {pl1, pl2…, plN}, {rl1, rl2…, rlN} и {re1, re2…, reN} можно рассчитать простые статистики, имеющие непосредственное значение для оценки стратегии инвестором. Максимальная месячная прибыль максимальная линейная месячная доходность и максимальная экспоненциальная месячная доходность характеризуют один наиболее удачный месяц.
Противоположные по смыслу величины – максимальный месячный убыток в абсолютном и относительном (аналогично доходности) измерении – имеют большое значение, поскольку размеры этих величин могут оказаться неприемлемыми, и тогда такой вариант стратегии придется отвергнуть. Даже высокодоходная стратегия, имеющая на длительном интервале всего один убыточный месяц, может быть отвергнута, если этот убыток превышает определенную пороговую величину. Максимальный месячный убыток в абсолютном выражении имеет смысл только в линейном случае и определяется как Аналогично определяются относительные величины для линейного случая как и для экспоненциального случая как
Общепринятым показателем риска является стандартное отклонение доходностей, зафиксированных на интервале τ. Чаще всего данный показатель рассматривается не сам по себе, а в совокупности со средней доходностью (см. ниже раздел, посвященный коэффициенту Шарпа).
Несложно также ввести и другие показатели: число прибыльных месяцев, число убыточных месяцев, средняя прибыль прибыльных месяцев, средний убыток убыточных месяцев, максимальное число прибыльных месяцев подряд, максимальное число убыточных месяцев подряд и т. п.
Одним из наиболее популярных показателей риска автоматизированных торговых стратегий является максимальная просадки капитала. Просадка в момент времени Т – это величина, равная разнице между текущим значением капитала Е(Т) и максимальным значением капитала на всем предшествующем интервале времени: Для интервала исследования стратегии τ максимальная просадка вычисляется как
С понятием просадки тесно связан показатель длительности просадки, измеряющий время, проходящее от момента установления локального максимума капитала до его пробития. Обозначим через lmax момент установления максимального значения капитала, а через E(tmax) обозначим значение капитала в момент tmax. Если в текущий момент времени T значение капитала превысило предыдущее максимальное значение, то есть E(T) > E(Tmax), то фиксируется продолжительность просадки как разница T – tmax. Максимальную для стратегии продолжительность просадки можно рассматривать как дополнительный негативный показатель качества стратегии.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!