📚 Hub Books: Онлайн-чтение книгДомашняяБесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац

Бесконечная сила. Как математический анализ раскрывает тайны вселенной - Стивен Строгац

Шрифт:

-
+

Интервал:

-
+
1 ... 4 5 6 7 8 9 10 11 12 ... 100
Перейти на страницу:

Причина, по которой мы пока не видим никаких признаков искомого прямоугольника, – у нас еще недостаточно ломтиков. Если разрезать пиццу на восемь частей и переложить их таким же образом, то фигура окажется более прямоугольной.

Бесконечная сила. Как математический анализ раскрывает тайны вселенной

По сути, пицца начинает походить на параллелограмм. Неплохо – по крайней мере это почти прямоугольник. Выступы вверху и внизу уже не так выпирают, как на предыдущем рисунке, – из-за большего количества ломтиков. Как и ранее, длина верхней границы фигуры равна C/2, а боковой границы – r.

Чтобы картинка выглядела еще лучше, разрежем пополам один из боковых ломтиков и перенесем его на другую сторону.

Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Теперь фигура очень похожа на прямоугольник. Да, вверху и внизу еще есть выступы из-за кривизны исходной корочки, но все же мы добились прогресса.

Похоже, увеличение числа кусков помогает, поэтому продолжим их нарезать. При шестнадцати ломтиках и таком же косметическом переносе половинки крайнего куска, как мы сделали только что, получается следующая фигура:

Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Чем больше кусков мы берем, тем сильнее сглаживаем выступы в верхней и нижней частях получающейся фигуры. Наши операции создают последовательность фигур, которые волшебным образом приближаются к определенному прямоугольнику. Поскольку фигуры к нему все ближе и ближе, назовем его предельным прямоугольником.

Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Смысл всей процедуры в том, что найти площадь предельного прямоугольника очень просто – достаточно перемножить его ширину и высоту. Все, что нам осталось, – выразить эти ширину и высоту через параметры исходного круга. Поскольку ломтики располагались вертикально, высота – это просто радиус r исходного круга, а ширина – половина длины его окружности, ведь его граница пошла на создание верхней и нижней границы прямоугольника – как это было для всех промежуточных фигур с выступающими краями. Следовательно, ширина равна C/2. Таким образом, площадь прямоугольника A = r × C / 2 = rC / 2. Но учитывая, что перекладывание ломтиков не меняло площади исходного круга, то и его площадь должна быть точно такой же!

Этот результат для площади круга, A = rC / 2, впервые получил (используя аналогичные, но более строгие рассуждения) древнегреческий математик Архимед (287–212 до нашей эры) в трактате «Измерение круга».

Самым новаторским аспектом доказательства было привлечение на помощь бесконечности. Имея всего четыре, восемь или шестнадцать ломтиков, мы могли сложить только фигуру с выступами. После малообещающего старта мы продвинулись к успеху, начав брать больше ломтиков; при этом получающаяся фигура все сильнее приближалась к прямоугольнику. Однако только при бесконечном множестве кусков она становилась по-настоящему прямоугольной. Эта идея и легла в основу анализа. С бесконечностью все упрощается.

Пределы и загадка стены

Предел подобен недостижимой цели. Вы можете подбираться к нему все ближе и ближе, но никогда не пройдете весь путь до конца.

Например, в доказательстве, использующем пиццу, мы могли приближаться к прямоугольнику, нарезая все большее количество ломтиков и переставляя их. Но истинной «прямоугольности» нам никогда не добиться. Мы можем лишь приблизиться к этому идеалу. К счастью, в анализе недостижимость предела обычно не имеет значения. Нередко мы можем решить задачу, представив, что способны достичь предела, а затем посмотрев, что следует из такого представления. Фактически многие из пионеров в этой области сделали свои великие открытия именно таким образом. Логически – нет. С воображением – да. Успешно – весьма.

Предел – это тонкое понятие, и в анализе оно занимает центральное место. Его не просто уловить, потому что в повседневной жизни эта идея не встречается. Пожалуй, ближайшей аналогией будет загадка стены. Если вы проходите половину расстояния до стены, затем половину оставшегося расстояния, потом половину оставшегося и так далее, то достигнете ли в конце концов этапа, на котором доберетесь до стены?

Очевидно, что ответ отрицателен, потому что в загадке стены на каждом этапе вы проходите только половину пути, а не весь путь. Сделаете ли вы десять шагов, миллион или любое другое число, между вами и стеной всегда останется какой-то промежуток. Однако столь же очевидно, что вы можете подойти к стене сколь угодно близко. Это означает, что на каком-то этапе вы окажетесь от нее в сантиметре, миллиметре, нанометре или на любом ином ненулевом расстоянии, но никогда не закончите свой путь. Здесь стена играет роль предела. На то, чтобы строго определить это понятие, понадобилось две тысячи лет. До тех пор пионеры анализа прекрасно обходились интуицией. Так что не волнуйтесь, если пределы кажутся вам сейчас туманными. Мы познакомимся с ними лучше, наблюдая на практике. С современной точки зрения пределы – это фундамент, на котором построен весь анализ.

Бесконечная сила. Как математический анализ раскрывает тайны вселенной

Если метафора со стеной кажется вам слишком мрачной и негуманной (кому захочется вечно приближаться к недосягаемой стене?), рассмотрите такую аналогию: все, что движется к какому-то пределу, подобно герою, занятому бесконечным поиском. Это не бесполезное занятие, как бессмысленная задача Сизифа, обреченного вечно вкатывать камень на гору только для того, чтобы увидеть, как он снова скатывается вниз. Когда в математике происходит приближение к пределу (как наши фигуры с выступами приближались к предельному прямоугольнику), это подобно тому, как главный герой стремится к чему-то, что, как он знает, невозможно, но все же надеется на успех, воодушевляясь прогрессом в своих попытках достичь недостижимой звезды.

Притча о 0,333…

Чтобы подкрепить важные идеи, что в бесконечности все упрощается и что пределы подобны недостижимым целям, возьмем пример из арифметики. Это задача преобразования обыкновенной дроби – например, 1/3 – в десятичную (в нашем случае 1/3 = 0,333…). Я хорошо помню, как моя школьная учительница математики мисс Стэнтон учила нас это делать. Запомнилось это потому, что она внезапно заговорила о бесконечности.

1 ... 4 5 6 7 8 9 10 11 12 ... 100
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?