📚 Hub Books: Онлайн-чтение книгДомашняяМатематика для гиков - Рафаель Роузен

Математика для гиков - Рафаель Роузен

Шрифт:

-
+

Интервал:

-
+
1 ... 4 5 6 7 8 9 10 11 12 ... 40
Перейти на страницу:

Математика для гиков

1.18. Наборы Lego
Математическое понятие: сложная система

Мир игрушек – это очередное место, где можно найти математику. Когда я был ребенком, я думал, что наборы Lego – это лучшая игра во всем мире. Было в этом что-то крайне отрадное, когда ты сидишь перед коробкой разобранного конструктора и думаешь, что хочешь построить. Как оказалось, наборы Lego предназначены не только для игр. Они также могут показать аспекты математики, которые в других случаях не были бы очевидными.

Математика для гиков

А именно, конструктор Lego играет роль в изучении сложной системы. Марк Чангизи и другие исследователи из Института Дьюка недавно провели исследование, чтобы получить ответ на вопрос, который кажется обманчиво простым. У всех систем есть компоненты: в телах есть клетки, у компьютера есть процессор, в экосистемах есть птицы и деревья. Исследователи хотели узнать, если система – неважно, состоит ли она из животных, клеток или электронных частей, – становится больше, увеличивается ли количество разновидностей компонентов? Сравним внутренний механизм наручных часов и старинных напольных часов. В напольных часах точно будет больше отдельных частей, но попадут ли эти детали в большее количество категорий, чем у наручных часов?

Исследователи доказали, что количество категорий в разных системах действительно возрастает по мере того, как масштаб объекта увеличивается. Они составили график и увидели, что у количества категорий и количества компонентов есть интересная закономерность. А именно, число разновидностей компонентов возрастало пропорционально количеству деталей, согласно степенному закону. (Степенная функция выглядит как Y = kXa. Y и X – это две переменные, которые мы хотим изучить; в этом случае Y обозначает количество компонентов, а Х – количество разновидностей компонентов. В этой формуле k – это любое число, называемое константой, а a – это показатель переменной Х.) Исследование также показало, что хотя количество разновидностей компонентов возросло вместе с количеством деталей, скорость замедлилась, когда количество деталей становилось все больше и больше.

Но когда они посчитали количество деталей и их разновидность в наборах Lego, они увидели, что количество разновидностей деталей росло быстрее, чем в других системах. Другими словами, чем больше набор Lego, тем больше разновидностей деталей в нем содержится. Любители Lego, коим является сам Чангизи, опасаются, что такой рост возник из-за разницы дизайна разных наборов. На сегодняшний день наборы Lego выпускаются в разных тематиках, включая «Звездные войны», «Ниндзяго», «Черепашек-ниндзя» и «Властелина колец». Некоторые опасаются, что такой количественный рост привел к специализациям деталей, то есть большое количество деталей подходит только одной теме или даже одному набору. У любителей оригинальных деталей Lego такая перемена вызывает только грусть. Но игрушки Lego продолжают быть разносторонними в другом смысле: они приходятся по душе широкому сегменту населения, включая математиков.

Математика для гиков

Мастер Lego

Кто занимается дизайном наборов Lego, которые мы можем купить в магазинах? Эти таланты также работают над моделями в полный рост в парках Legoland по всему миру. Чтобы стать мастером Lego, потребуются годы практики, и эти специалисты часто выявляются на публичных конкурсах.

1.19. Давайте полетим на… Четырехугольнике
Математическое понятие: фигуры

Без воздушных змеев весна и лето просто не были бы самими собой. Но их очарование выходит за рамки трепета управления куском материи во время легкого ветра. Традиционные американские воздушные змеи являются хорошим примером особого вида четырехугольника. Обычный воздушный змей имеет четыре стороны, как квадрат или прямоугольник. Но в отличие от этих двух фигур, стороны воздушного змея группируются друг с другом по длине. Поэтому две короткие стороны примыкают друг к другу так же, как и две длинные стороны. Именно такое расположение сторон придает воздушному змею эту отличительную форму вытянутого ромба.

Форма воздушного змея интересна также и тем, как множество змеев может быть сложено, чтобы покрыть плоскость (которая является идеализированной плоской поверхностью, как лист бумаги, не имеющий толщину). Вы можете взять любого воздушного змея с любым углом между сторонами и использовать его вместе с бесчисленным множеством идентичных змеев, чтобы полностью покрыть плоскость так, чтобы между отдельными фигурами не оставалось зазоров. Такое покрытие называется мозаичным размещением. (Представьте плитку в вашей ванной, тогда вы поймете, о чем идет речь.) Воздушные змеи играют роль и в мозаике Пенроуза – особом виде разбиения плоскости, где отдельные детали формируют узоры, которые не повторяются в обычном порядке.

Математика для гиков

Форма воздушного змея также определяет свои идеальные летные условия. Воздушные змеи в форме ромба лучше всего летают во время легкого ветра, но им нужен хвост для устойчивости. Треугольные змеи могут летать в практически безветренную погоду. А шестисторонние змеи, которые появились в Японии сотни лет назад, очень маневренны, их обычно используют в соревнованиях. (Если вы заставите упасть воздушного змея противника, то вы выиграли!)

Площадь воздушного змея

Существует два способа узнать площадь воздушного змея. Если вы знаете длину двух диагоналей, тогда вы можете умножить эти длины и разделить результат на 2. Или если вы знаете длину короткой и длинной стороны, а также градус угла между ними, тогда вы можете воспользоваться тригонометрией: умножьте длину короткой стороны на длинную, а потом умножьте результат на синус угла.

Математика для гиков
1.20. Что общего у герпеса и столовой соли?
Математическое понятие: Платоновы тела

Не все трехмерные фигуры созданы равными. Подумайте о тех фигурах, которые существуют или могли бы существовать. Некоторые, как форма картофелины, бугорчатые и неровные. Другие, как звезда, аккуратные, с прямыми линиями. Шары гладкие и круглые, а фигурки в тетрисе имеют острые углы.

Математика для гиков

Однако некоторые фигуры особенные. Они обладают характеристиками, которые изучались тысячелетиями. Такая историческая группа включает в себя платоновы тела. Эти трехмерные фигуры названы в честь философа, который жил в Афинах в 400-х годах до н. э., они построены с помощью двухмерных фигур, таких, как квадраты, треугольники или пятиугольники. Но двухмерные фигуры должны соответствовать некоторым условиям, чтобы быть способными превратиться в платоново тело.

1 ... 4 5 6 7 8 9 10 11 12 ... 40
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?