📚 Hub Books: Онлайн-чтение книгДомашняяКосмический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд

Шрифт:

-
+

Интервал:

-
+
1 ... 76 77 78 79 80 81 82 83 84 ... 117
Перейти на страницу:

Год фотона стал также и годом специальной теории относительности. Опыт Майкельсона – Морли, показавший невозможность определить скорость движения Земли относительно эфира, был поставлен за 13 лет до начала XX века.[83] На самом деле неизвестно даже, знал ли Эйнштейн об этой работе. Согласно его собственным воспоминаниям, ключом к созданию специальной теории относительности послужила электродинамика Максвелла, созданная ещё в 1860-х годах. Эйнштейн, мастер мысленных экспериментов, в шестнадцатилетнем возрасте (то есть в 1895 году) спросил себя: «Как будет выглядеть луч света для наблюдателя, движущегося вместе с ним со скоростью света?» Даже в столь юном возрасте он понял, что в результате возникает противоречие. Таким образом, его великое открытие взросло отнюдь не на экспериментальной почве.

В конце XIX века физики приступили к разведке микроскопического мира электронов и атомов. Великий голландский физик Хендрик Антон Лоренц постулировал существование электрона, и в 1897 году британский физик Дж. Дж. Томсон открыл его и изучил его свойства. Рёнтген обнаружил свои знаменитые лучи в 1895 году, а годом позже Беккерель открыл и исследовал радиоактивность.

Но существовал и ряд явлений, не известных в то время и открытых несколькими годами позже. Так, Роберт Милликен измерил заряд электрона только в 1910 году, а опыты Резерфорда, приведшие к открытию атомного ядра,[84] были поставлены ещё позже, хотя какие-то спекуляции на эту тему существовали ещё в конце XIX века, а современные представления об атомах восходят ещё к Джону Дальтону и началу девятнадцатого столетия.

Открытие Резерфордом «планетарной» структуры атома – лёгких электронов, обращающихся вокруг тяжёлых ядер, – было ключевым. Через два года оно подтолкнуло Бора к созданию теории квантованных орбит. Но было ли открытие Резерфорда безусловно необходимым для создания теории Бора? Я сомневаюсь в этом. Я был удивлён, узнав недавно, что одна из первых успешных попыток построения квантовой механики, предпринятая Гейзенбергом, вообще не оперирует понятием атома.[85]

Первое приложение его матричной механики было теорией простых колеблющихся систем, так называемых гармонических осцилляторов. На самом деле теория Планка – Эйнштейна как раз и является такой теорией – теорией гармонических осцилляций (колебаний) поля излучения. А возможность изменения энергии отдельных осцилляторов лишь фиксированными порциями приводит нас к аналогии с боровскими дискретными орбитами. На этом фоне атом Резерфорда, как промежуточное экспериментальное открытие, не выглядит необходимым для создания квантовой механики.

Остаётся ещё одна проблема, касающаяся атома. Можно ли догадаться, что его структура подобна структуре Солнечной системы? Мне думается, что здесь ключевую роль могла бы сыграть спектроскопия, изучение спектральных линий – тех самых, которые Хаббл использовал для определения скоростей галактик. За XIX век было накоплено огромное количество спектроскопических данных. Спектр водорода был изучен во всех деталях. Другими словами, идея о том, что атом состоит из электронов и некоего положительно заряженного объекта, витала в воздухе уже за несколько лет до 1900 года. Недавно я узнал от одного своего японского друга, что первые идеи относительно планетарной модели атома были высказаны японским физиком Хантаро Нагаока. Существует даже японская почтовая марка с портретом Нагаока и его атомом.

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

Статья Нагаока, доступная в интернете, датирована 1903 годом, то есть она вышла за восемь лет до экспериментов Резерфорда. Если бы экспериментов Резерфорда не было, то богатые спектроскопические данные, квантовое поведение осцилляторов и идеи Нагаока вполне могли бы привести блестящих молодых учёных Гейзенберга и Дирака к неизбежному моменту «эврики»: «Ага! Всё работает! Положительный заряд в центре и обращающиеся вокруг него по дискретным орбитам электроны!» Возможно, Бор пришёл бы к этому и самостоятельно. Современные физики совершили аналогичный, если не сказать, намного больший прорыв, выведя теорию струн из спектроскопии адронов.

Ну а что можно сказать относительно теории относительности? Могла ли она быть создана без проведённых в XX веке экспериментов? Безусловно! Всё, в чём нуждался Эйнштейн, – это мысленный эксперимент, который привёл его к открытию принципа эквивалентности. Оставалось лишь соединить принцип эквивалентности со специальной теорией относительности.

Сегодня, пожалуй, нет ни одного серьёзного физика, который не пытался бы соединить две на первый взгляд несовместимые теории. Я имею в виду, конечно же, квантовую механику и общую теорию относительности. В конце 1920-х годов существовала очень похожая проблема: как примирить квантовую механику со специальной теорией относительности. Физики масштаба Дирака, Паули и Гейзенберга не находили себе места, пока специальная теория относительности оставалась несовместимой с квантовой механикой. В результате родилась релятивистская квантовая теория, описывающая взаимодействие электрона с электромагнитным полем. Тут уже всё было достаточно однозначно. Первые усилия по созданию квантовой электродинамики были мотивированы не чем иным, как желанием Дирака объединить квантовую механику и специальную теорию относительности. Но откуда Дирак мог знать, что уравнение Дирака правильно?

И в этот драматический момент на сцену выходит Паули со своим принципом запрета. Истоки открытия Паули лежали в области химии, а именно периодической системы и попыток объяснения закономерностей расположения электронов на разных орбитах в атомах разных химических элементов. Чтобы объяснить, почему электроны заполняют орбиты в определённом порядке, Паули пришлось ввести новое свойство электрона – спин. Откуда взялась идея спина? Отнюдь не из новых экспериментов, поставленных в XX веке, а скорее из спектроскопических данных, накопленных ещё в XIX. Добавление новой, спиновой степени свободы означало, что Паули мог расположить на каждой орбите два электрона со спинами, направленными в противоположные стороны. Так, в атоме гелия два электрона находятся на одной и той же, самой нижней боровской орбите. Это предположение оказалось ключом к периодической системе Менделеева. Но если идея Паули, по сути, была всего лишь догадкой, основывавшейся на химии XIX века, то релятивистская теория Дирака блестяще объяснила загадочные свойства спина.

1 ... 76 77 78 79 80 81 82 83 84 ... 117
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?