📚 Hub Books: Онлайн-чтение книгДомашняяУкрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт

Укрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+
1 ... 9 10 11 12 13 14 15 16 17 ... 98
Перейти на страницу:

Укрощение бесконечности. История математики от первых чисел до теории хаоса

Древняя обсерватория Джантар-Мантар возле Джайпура. Сегодня очевидно, что дизайнер был прекрасным математиком

«Лилавати» посвящена сложным идеям арифметики и содержит метод девятки, при котором числа заменяют суммой составляющих их цифр, чтобы проверить результат вычислений. Там же приводятся правила проверки делимости на 3, 5, 7 и 11. Четко прописаны функции нуля как самостоятельной цифры. В «Биждаганите» мы находим способы решения уравнений. «Сиддханта-широмани» связана с тригонометрией: здесь есть таблицы синусов и различные тригонометрические соотношения. Репутация Бхаскари была столь прочной, что его книги переиздавали вплоть до начала XIX в.

ЧТО ДАВАЛА АРИФМЕТИКА ИМ

Самый древний из дошедших до нас математических текстов Китая – книга, отредактированная Чжан Цаном и датируемая примерно 100 г. н. э. Типичная задача такова: «Два с половиной пикуля риса были куплены за 3/7 ляна серебра. Сколько пикулей можно купить за 9 лянов?» Предполагаемое решение использует математический принцип, названный средневековыми математиками тройным правилом. В современных обозначениях, взяв за х неизвестное искомое количество, найдем:

Укрощение бесконечности. История математики от первых чисел до теории хаоса

откуда x = 521/2 пикуля. Пикуль – мера веса, приблизительно равная 60,5 кг.

Индийская система

Индийская система начала распространяться по арабскому миру еще до того, как полностью сформировалась на родине. Ученый Север Себохт так описывал ее использование в Сирии в 662 г.: «Я опущу все дискуссии о науке в Древней Индии ‹…› об их превосходных открытиях в астрономии ‹…› и других ценных методах вычисления ‹…› я хочу лишь сказать, что все эти вычисления были сделаны при помощи девяти цифр».

В 776 г. при дворе Великого халифа появляется путешественник из Индии и демонстрирует свои способности в сиддханта – методе подсчетов, а также в тригонометрии и астрономии. Судя по всему, основой его вычислений служила «Брахма-спхута-сиддханта» Брахмагупты, написанная в 628 г., но в любом случае его труд был прекрасно переведен на арабский.

На первых порах индийской системой пользовались только ученые, и лишь позже этот метод стал распространяться в арабском деловом сообществе, а потом и в быту, вплоть до 1000 г. Но изданный в 825 г. труд Аль-Хорезми «Книга об индийском счете» принес индийской системе широкую известность в арабском мире. Четырехтомный труд другого математика, Аль-Кинди, «О применении индийской арифметики» (830) укрепил уверенность ученых в возможности записать любое число при помощи всего десяти цифр.

Темные века

Арабский и индийский мир делали выдающиеся шаги как в математике, так и в остальных науках, а Европу охватил период относительного застоя, хотя Средние века всё же нельзя назвать темными временами в полном смысле. Было заметно продвижение вперед, но медленное и будто нерешительное. Скорость изменений стала нарастать с момента, когда в Европе распространились научные открытия Востока. Из европейских стран Италия расположена ближе всего к арабскому миру, и вполне естественно, что достижения соседей, умудренных в математике, попадали в Европу через Италию. Венеция, Генуя и Пиза уже в то время были важными центрами торговли, и купеческие корабли ходили отсюда до Северной Африки и восточного побережья Средиземноморья. Они активно обменивали европейскую шерсть и древесину на шелк и специи.

Помимо торговли в прямом смысле – материальными ценностями, – не менее активно велись и «продажи» научных идей. Именно по торговым путям в Европу проникли арабские открытия в математике и других науках, зачастую передаваемые из уст в уста. Благодаря торговле Европа добилась процветания, на смену бартеру пришли деньги, система расчетов, вкладов и пошлин стала намного сложнее. Эквивалентом карманному калькулятору того времени был абак – простые счеты, где костяшки на проволоке изображали числа. Но эти числа требовалось еще и записать на бумаге для легитимности сделок и составления отчетов. Купцы отчаянно нуждались в надежном способе записи чисел, а также в простых и быстрых методах вычислений.

Влиятельной фигурой был в то время Леонардо Пизанский, более известный под прозвищем Фибоначчи, чей труд «Книга абака» был опубликован в 1202 г. (По-итальянски «abbaco» означает «вычисление», так что не стоит путать его с абаком – латинскими счетами.) В своей книге Леонардо познакомил Европу с индийско-арабскими обозначениями цифр.

Укрощение бесконечности. История математики от первых чисел до теории хаоса

Эволюция западных символов цифр

В «Книге абака» есть одно нововведение, сохранившееся до наших дней: горизонтальная черта в дроби. Индусы использовали те же символы, но без черты; судя по всему, первыми ее предложили арабы. Фибоначчи применял ее очень часто, но его подход отличается от современного. Например, он мог одну черту использовать как элемент сразу нескольких самостоятельных дробей.

Поскольку дробям в нашей истории отводится крайне важное место, стоит сделать несколько уточнений. В такой дроби, какУкрощение бесконечности. История математики от первых чисел до теории хаоса, 4 в нижней половине показывает, что нужно поделить единицу на четыре равные части, а 3 в верхней половине – что нужно выбрать три из этих единиц. Более формально: 4 – знаменатель, а 3 – числитель. Для удобства работы дроби несколько видоизменились: три четверти изображают как 3/4 или 3/4. Горизонтальную черту заменила косая, или слеш.

ЛЕОНАРДО ПИЗАНСКИЙ (ФИБОНАЧЧИ) 1170–1250

Укрощение бесконечности. История математики от первых чисел до теории хаоса

Леонардо родился в Италии и вырос на севере Африки, где его отец Гильермо трудился дипломатом, обеспечивая мирную торговлю с Беджаей (современным Алжиром). Сопровождая отца в деловых поездках, мальчик быстро усвоил арабскую систему записи чисел и оценил ее значение. В 1202 г. в своей «Книге абака» он пишет: «Когда отец мой был назначен на должность таможенного чиновника, заведовавшего в Беджае делами стекавшихся к нему пизанских торговцев, он в отрочестве моем призвал меня к себе и предложил несколько дней учиться счетному искусству, сулившему немало удобств и выгод для моего будущего. Наученный благодаря мастерству учителей основам индийского счета, я приобрел большую любовь к этому искусству».

1 ... 9 10 11 12 13 14 15 16 17 ... 98
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?