📚 Hub Books: Онлайн-чтение книгДомашняяЧисло Бога. Золотое сечение – формула мироздания - Марио Ливио

Число Бога. Золотое сечение – формула мироздания - Марио Ливио

Шрифт:

-
+

Интервал:

-
+
1 ... 15 16 17 18 19 20 21 22 23 ... 78
Перейти на страницу:

Так можно ли считать, что вопрос о золотом сечении и великой пирамиде, насчитывающий 4500 лет, наконец-то закрыт? Мы, конечно, от души на это надеемся, однако история, к несчастью, доказывает, что мистическое очарование пирамид и нумерологическая «тайна» золотого сечения оказываются сильнее даже самых основательных доказательств. Доводы, которые выдвигали Петри, Джиллингс, Мендельсон и Герц-Фишер, известны уже много десятков лет, однако это ничуть не мешает публиковать многочисленные новые книги, на все лады рассказывающие о надуманной «загадке» золотого сечения.

Так что с нашей точки зрения можно заключить, что крайне маловероятно, чтобы золотое сечение и его свойства открыли древние вавилоняне или древние египтяне – эту задачу предстояло решить греческим математикам.

Второе сокровище

У геометрии есть два великих сокровища: одно – теорема Пифагора, второе – деление отрезка в крайнем и среднем отношении. Первое мы уподобим мерке золота, второе же – драгоценному самоцвету.

Иоганн Кеплер (1571–1650)

Нет никаких сомнений, что каждый, кто воспитан в западной или ближневосточной цивилизации, во всем, что касается математики, естественных наук, философии, литературы и искусства, является учеником древних греков. Немецкий поэт Гёте писал: «Именно греки умели мечтать о жизни слаще всех народов», и это лишь скромная дань уважения отважным первопроходцам и всем открытиям, которые сделали греки в различных областях знания, ими же разработанных и названных.

Однако даже самые блестящие достижения греков во всех прочих сферах меркнут рядом с их головокружительными открытиями в математике. К примеру, всего за четыреста лет – от Фалеса Милетского (ок. 600 г. до н. э.) до «великого геометра» Аполлония Пергского (ок. 200 г. до н. э.) греки полностью сформировали основы геометрической теории.

Успехи греков в математике во многом были прямым следствием страсти к познанию ради познания, а не ради практических целей. Рассказывают, что один ученик Евклида, изучив вместе с ним некую теорему, спросил: «А что я с этого получу?» Евклид приказал рабу дать мальчику медную монету, чтобы тот увидел, что наука и в самом деле занятие прибыльное.

Образование государственного деятеля во времена Платона должно было включать в себя арифметику, геометрию, стереометрию, астрономию и музыку – и все это, как рассказывает нам пифагореец Архит, подпадало под общее название «математика». По легенде, когда Александр Великий спросил своего учителя Менехма (которому приписывают открытие эллиптической кривой, параболы и гиперболы), нельзя ли изучить геометрию как-нибудь поскорее, получил ответ: «О повелитель, в странствиях по нашему царству можно найти дороги для царей и дороги для простых граждан, однако в геометрию нет царского пути».

Платон

В таком интеллектуальном окружении и вырос Платон (428/427 г. до н. э. – 348/347 г. до н. э.), один из самых влиятельных умов Древней Греции и западной цивилизации в целом. Считается, что Платон изучал математику у пифагорейца Феодора Киренского, который первым доказал, что не только √2, но и √3, √5 и так далее вплоть до √17 – иррациональные числа. Почему он остановился на 17, никто в точности не знает, однако общего доказательства он, очевидно, вывести не сумел. Некоторые исследователи утверждают, что Феодор, вероятно, приводит самое легкое доказательство несоизмеримости, опираясь на понятие золотого сечения (идея примерно та же, что и в Приложении 2).

В своем «Государстве» Платон пишет, что математику совершенно необходимо включать в программу образования всех философов и государственных деятелей. Подобным же образом надпись над входом в его школу (Академию) гласила: «Не геометр да не войдет!» Историк математики Дэвид Юджин Смит в своей книге «Наш долг перед Грецией и Римом» (David Eugene Smith. Our Debt to Greece and Rome) называет это первым требованием к абитуриентам в истории. Восхищение математикой очевидно и тогда, когда Платон не без зависти пишет об отношении к математике в Египте, где на потеху детишкам изобрели арифметические игры, которые они изучают с удовольствием и забавы ради.

Оценивая роль Платона в развитии математики в целом и в понимании золотого сечения в частности, мы должны будем изучить не только его вклад в собственно математику, достаточно скромный, но и последствия его влияния на математические изыскания других ученых и в его собственном, и в последующих поколениях, и поддержки, которую он оказывал науке в целом. В некотором смысле Платона можно считать одним из первых чистых теоретиков. Примером его теоретических наклонностей может служить отношение к астрономии, где он предпочитал не наблюдать движение светил, а советовал «оставить небеса в покое» и сосредоточиться на более абстрактных математических небесах. Согласно Платону, настоящие звезды – это всего лишь отображение математических небес, подобно тому как геометрические чертежи – отображение абстрактных понятий точки, линии и окружности. Любопытно, что в своей выдающейся книге «История греческой математики» (Thomas Heath. A History of Greek Mathematics), изданной в 1921 году, сэр Томас Хит пишет: «Трудно разобраться, что же имел в виду Платон, когда проводил различие между видимой небесной тканью (то есть видимыми звездами, их расположением и движением), которая, безусловно, прекрасна, и подлинной небесной тканью, которым видимые небеса лишь подражают и которые бесконечно чудеснее и прекраснее».

Как астрофизик-теоретик я должен отметить, что Платон в неявном виде высказывает некоторые соображения, которым я симпатизирую. Здесь проводится различие между красотой космоса как такового и красотой теории, которая объясняет устройство Вселенной. Для наглядности приведу принцип, который открыл великий немецкий художник Альбрехт Дюрер (1471–1528).

Сложим шесть правильных пятиугольников (рис. 19) так, чтобы получился один большой пятиугольник с пятью отверстиями в форме золотых треугольников (равнобедренных треугольников с отношением стороны к основанию, равным φ). Шесть таких пятиугольников, в свою очередь, образуют еще один правильный пятиугольник, большой и более дырчатый – и так до бесконечности.

Думаю, все согласятся, что получившаяся фигура (рис. 19) удивительно красива. Однако у нее есть и обаяние другого рода – математическое: оно состоит в простоте принципа, по которому она строится. Так вот, мне кажется, это и есть математические небеса, о которых говорил Платон.

Не приходится сомневаться, что общее руководство научными изысканиями, которое осуществлял Платон в годы своего правления, гораздо важнее его непосредственного вклада в исследования. В тексте, который приписывают Филодему и относят к первому веку, мы читаем: «В те времена в математике [был достигнут] большой прогресс, и Платон им руководил и задавал задачи, которые математики ревностно решали».

Число Бога. Золотое сечение – формула мироздания

Рис. 19

1 ... 15 16 17 18 19 20 21 22 23 ... 78
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?