Удивительные числа Вселенной - Антонио Падилья
Шрифт:
Интервал:
Однако на этом все закончилось. В моем словаре не было ни гуголплекса, ни числа Грэма, ни даже TREE(3). Мне бы понравились эти колоссы. Подобные фантастические числа могут привести вас на грань понимания, на передний край физики и раскрыть фундаментальные истины о природе нашей реальности. Но наше путешествие начинается с другого большого числа, которого тоже не было в моем словаре: 1,000000000000000858.
Полагаю, вы разочарованы. Я обещал вам покататься на левиафанах, а это число вовсе не кажется большим. Даже народ пирахан из тропических лесов Амазонии может назвать что-то большее, хотя их система числительных включает только hói (один), hoí (два) и báagiso (много)[5]. Еще хуже, что это число даже не такое красивое и элегантное, как π или √2. Оно кажется замечательно непримечательным во всех смыслах.
Все это верно до тех пор, пока мы не начинаем думать о природе пространства и времени и об экстремальных случаях взаимодействия человека с ними. Я выбрал именно это число, потому что оно стало мировым рекордом, отражающим пределы нашей физической способности связываться со временем.
16 августа 2009 года ямайскому спринтеру Усэйну Болту удалось замедлить свои биологические часы в 1,000000000000000858 раза. Ни один человек никогда не замедлял время настолько, по крайней мере без механической помощи. Возможно, вы знаете это событие под другим названием. В тот день на чемпионате мира по легкой атлетике в Берлине Болт побил мировой рекорд в беге на 100 метров, разогнавшись на отрезке между 60 и 80 метрами до скорости 12,72 метра в секунду. На трибунах сидели родители бегуна Уэлсли и Дженнифер, и в каждую секунду, прожитую их сыном на этом отрезке, они проживали чуть больше: если точно, то 1,000000000000000858 секунды.
Чтобы понять, как Болту удалось замедлить время, нам нужно ускорить его до скорости света. Нам надо спросить, что произошло бы, если бы спринтер смог догнать свет. При желании вы можете назвать это мысленным экспериментом, но не забывайте, что Болт сумел побить три мировых рекорда на Олимпийских играх в Пекине, питаясь куриными наггетсами. Вообразите, чего он мог бы достичь при правильном рационе.
Чтобы иметь хоть какую-то надежду догнать свет, необходимо предположить, что он движется с конечной скоростью. Это далеко не очевидно. Когда я сказал своей дочери, что свет от ее книги достиг ее глаз не мгновенно, она сразу же проявила скептицизм и настояла на проведении эксперимента, чтобы выяснить, верно ли это на самом деле. Обычно всякий раз, когда я чересчур близко подхожу к экспериментальной физике, у меня идет кровь из носа, но у моей дочери, похоже, обнаружилось больше практических умений. Для определения скорости света она предложила такой метод: выключите свет в спальне, затем снова включите его и посчитайте, сколько времени потребуется, чтобы свет дошел до вас. Это ровно тот же эксперимент, который Галилео Галилей и его помощник провели с закрывающимися фонарями 400 лет назад. Как и моя дочь, физик пришел к выводу, что свет распространяется если и не мгновенно, то необычайно быстро. Скорость света велика, но конечна.
К середине XIX века некоторые физики — например, француз с прекрасным именем Ипполит Физо — взялись определить достаточно точное (и конечное) значение скорости света. Однако чтобы правильно понять, что значит догнать свет, нам нужно сначала сосредоточиться на замечательной работе шотландского физика Джеймса Клерка Максвелла. Она также проиллюстрирует прекрасную синергию между математикой и физикой.
К тому моменту, когда Максвелл изучал поведение электричества и магнетизма, у ученых уже имелись намеки, что они могут оказаться двумя сторонами одной медали. Например, Майкл Фарадей, один из самых влиятельных ученых Англии, несмотря на отсутствие у него формального образования, ранее открыл электромагнитную индукцию, показав, что изменение магнитного поля порождает электрический ток. Французский физик Андре-Мари Ампер также установил связь между этими двумя явлениями. Максвелл взял эти идеи и соответствующие уравнения и попытался придать им математическую строгость. Но он заметил некоторые неувязки: для переменных полей и токов закон Ампера оказывался неверным. Максвелл провел аналогию с уравнениями, описывающими течение воды, и определил поправки для предложений Ампера и Фарадея. С помощью математических рассуждений он нашел недостающие части этой электромагнитной головоломки, и в результате возникла картина, обладающая беспрецедентной элегантностью и красотой. Именно эта стратегия, впервые предложенная Максвеллом, раздвигает границы физики в XXI веке.
Создав свою математически непротиворечивую теорию, объединяющую электричество и магнетизм, Максвелл заметил нечто волшебное. Его новые уравнения допускали волновое решение — электромагнитную волну, где электрическое поле периодически меняется в одном направлении, а магнитное — в другом. Чтобы понять, что обнаружил Максвелл, представьте, что вы плаваете с аквалангом и к вам приближаются две морские змеи. Они двигаются по одной прямой, но электрическая извивается в направлении вверх-вниз, а магнитная — влево-вправо. Что еще хуже, они мчатся к вам со скоростью 310 740 000 метров в секунду. Возможно, последняя часть аналогии ужасает сильнее всего, но она — как раз самая замечательная часть открытия Максвелла. Дело в том, что величина 310 740 000 метров в секунду была скоростью, вычисленной Максвеллом для своей электромагнитной волны: она просто выскочила из его уравнений, как математический чертик из табакерки. Любопытно, что эта величина оказалась также очень близкой к оценкам скорости света, установленным Физо и другими учеными. Вспомните, что, согласно убеждениям того времени, электричество и магнетизм не имели ничего общего со светом; однако оказалось, что они, по-видимому, представляют собой волны, бегущие с одинаковой скоростью. Современные измерения скорости света в вакууме дают значение 299 792 458 метров в секунду, но и параметры уравнений Максвелла теперь известны с улучшенной точностью, так что это чудесное совпадение сохранилось. Благодаря ему Максвелл понял, что свет и электромагнетизм должны быть явлениями одной природы: удивительная связь между двумя, казалось бы, различными свойствами физического мира была обнаружена математическими методами.
Это еще не все. Волны Максвелла включали не только свет. В зависимости от частоты их колебаний (иными словами, от скорости изгибания змей из стороны в сторону) эти волновые решения описывали радиоволны, рентгеновские и гамма-лучи, и, какими бы разными ни были их частоты, скорость перемещения волн всегда оказывалась
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!