📚 Hub Books: Онлайн-чтение книгДомашняяМаленькая книга о черных дырах - Франс Преториус

Маленькая книга о черных дырах - Франс Преториус

Шрифт:

-
+

Интервал:

-
+
1 ... 33 34 35 36 37 38 39 40 41 42
Перейти на страницу:

Квантовая механика приложима не только к малым, но и (как мы полагаем) ко всем системам, однако для больши́х систем квантово-механические правила быстро становятся очень сложными. Ключевой концепцией является квантовая запутанность, простым примером которой может служить понятие спина (вращения). Индивидуальные электроны обладают спином, поэтому на практике единичный электрон может иметь спин, направленный вверх или вниз по отношению к выбранной пространственной оси. Спин электрона является наблюдаемой величиной, потому что электрон порождает слабое магнитное поле, подобное полю магнитного бруска. Тогда спин, направленный вверх, означает, что северный полюс электрона указывает вниз, а спин, направленный вниз, означает, что северный полюс «смотрит» вверх. Два электрона могут быть поставлены в сопряженное квантовое состояние, в котором у одного из них спин направлен вверх, а у другого вниз, но сказать, у какого из электронов какой спин, при этом невозможно[21]. В сущности, в основном состоянии атома гелия два электрона находятся именно в таком состоянии, называемом спин-синглетным, так как суммарный спин обоих электронов равен нулю. Если мы разделим эти два электрона, не меняя их спинов, то сможем продолжать утверждать, что они вместе спин-синглетны, но по-прежнему не сможем сказать, каков будет спин у любого из них по отдельности. Вот если мы измерим один из их спинов и установим, что он направлен вверх, тогда мы будем полностью уверены, что второй направлен вниз. В этой ситуации мы говорим, что спины запутаны – ни один сам по себе не имеет определенного значения, в то время как вместе они находятся в определенном квантовом состоянии.

Эйнштейна очень беспокоило явление запутанности: оно, казалось, угрожает основным принципам теории относительности. Рассмотрим случай двух электронов в спин-синглетном состоянии, когда они отстоят далеко друг от друга в пространстве. Для определенности, пусть один из них возьмет себе Алиса, а другой – Боб. Допустим, что Алиса измерила спин своего электрона и обнаружила, что он направлен вверх, а Боб ничего измерять не стал. Пока Алиса не выполнила свое измерение, невозможно было сказать, каков спин его электрона. Но как только она свое измерение завершила, она абсолютно точно узнала, что спин электрона Боба направлен вниз (в направлении, обратном направлению спина ее собственного электрона). Значит ли это, что ее измерение мгновенно перевело электрон Боба в состояние, когда его спин направлен вниз? Как это могло произойти, если электроны пространственно разделены? Эйнштейн и его сотрудники Натан Розен и Борис Подольский чувствовали, что история с измерением запутанных систем настолько серьезна, что угрожает самому существованию квантовой механики. Сформулированный ими парадокс Эйнштейна−Подольского−Розена (ЭПР) использует мысленный эксперимент, похожий на тот, что мы сейчас описали, чтобы сделать вывод: квантовая механика не может быть полным описанием реальности. Сейчас на основании последовавших за этим теоретических изысканий и множества измерений установилось общее мнение, что ЭПР-парадокс содержит ошибку, а квантовая теория верна. Квантово-механическая запутанность реальна: измерения запутанных систем будут коррелировать, даже если эти системы далеко разнесены в пространстве-времени.

Вернемся к ситуации, где мы поставили два электрона в спин-синглетное состояние и раздали их Алисе и Бобу. Что мы можем сказать об электронах до того, как проведены измерения? Что оба вместе они находятся в определенном квантовом состоянии (спин-синглетном). Спин Алисиного электрона с одинаковой вероятностью направлен вверх или вниз. Точнее, квантовое состояние ее электрона с одинаковой вероятностью может быть одним (спином вверх) или другим (спином вниз). Теперь для нас понятие вероятности приобретает более глубокий смысл, чем раньше. Прежде мы рассматривали определенное квантовое состояние (основное состояние атома водорода) и видели, что есть некоторые «неудобные» вопросы, такие, например, как «Где находится электрон?», – вопросы, ответы на которые существуют только в вероятностном смысле. Если бы мы задавали «хорошие» вопросы, например: «Какова энергия этого электрона?», мы получали бы на них определенные ответы. Теперь же нет «хороших» вопросов, которые мы могли бы задать об Алисином электроне, ответы на которые не зависели бы от электрона Боба. (Мы не говорим о глупых вопросах вроде «А есть ли у Алисиного электрона вообще спин?» – вопросах, на которые существует только один ответ.) Таким образом, для определения параметров одной из половин запутанной системы нам придется использовать вероятностный язык. Определенность возникает только, когда мы рассматриваем связь между вопросами, которые могут задать о своих электронах Алиса и Боб.

Мы нарочно начали с одной из простейших квантово-механических систем, которые нам известны: системы спинов индивидуальных электронов. Есть надежда, что на базе подобных простых систем будут построены квантовые компьютеры. Система спинов индивидуальных электронов или другие эквивалентные квантовые системы сейчас называются кубитами (сокращение от «квантовые биты»), что подчеркивает их роль в квантовых компьютерах, аналогичную роли, которую играют обычные биты в компьютерах цифровых.

Представим себе теперь, что мы заменили каждый электрон гораздо более сложной квантовой системой со многими, а не только двумя квантовыми состояниями. Например, дали Алисе и Бобу бруски из чистого магния. Прежде чем Алиса и Боб разойдутся по своим делам в разные стороны, их бруски могут взаимодействовать, и мы договоримся, что при этом они приобретают определенное общее квантовое состояние. Как только Алиса и Боб расходятся, их магниевые бруски перестают взаимодействовать. Как и в случае с электронами, каждый брусок находится в неопределенном квантовом состоянии, хотя вместе, как мы считаем, они образуют состояние вполне определенное. (В этом обсуждении мы предполагаем, что Алиса и Боб способны перемещать свои магниевые бруски, никак не нарушая их внутреннего состояния, точно так же как прежде мы предполагали, что Алиса и Боб могли разделять свои запутанные электроны, не меняя их спинов.) Но различие между этим мысленным экспериментом и экспериментом с электронами заключается в том, что неопределенность квантового состояния каждого бруска огромна. Брусок вполне может приобрести больше квантовых состояний, чем число атомов во Вселенной. Вот тут-то на сцену и выходит термодинамика. Очень неточно определенные системы могут, тем не менее, иметь некоторые хорошо определенные макроскопические характеристики. Такой характеристикой является, например, температура. Температура – это мера того, с какой вероятностью любая часть системы имеет определенную среднюю энергию, причем более высокая температура соответствует большей вероятности иметь большую энергию. Другой термодинамический параметр – энтропия, по сути, равная логарифму количества состояний, которые система может принимать. Еще одна термодинамическая характеристика, которая была бы существенна для бруска магния, – это его суммарная намагниченность, то есть, в сущности, параметр, показывающий, насколько больше в бруске может быть электронов со спином, направленным вверх, чем со спином, направленным вниз.

1 ... 33 34 35 36 37 38 39 40 41 42
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?