Искусство мыслить правильно - Александр Ивин
Шрифт:
Интервал:
Вывод из сказанного как будто ясен. Настаивая на исключении логических противоречий, не следует, однако, всякий раз «поверять алгеброй геометрию» и пытаться втиснуть все многообразие противоречий в прокрустово ложе логики.
Логические противоречия недопустимы в науке, но установить, что конкретная теория не содержит их, непросто. То, что в процессе развития и развертывания теории не встречено никаких противоречии, еще не означает, что их в самом деле нет. Научная теория — очень сложная система утверждений. Не всегда противоречие удается обнаружить относительно быстро путем последовательного выведения следствий из ее положений.
Вопрос о непротиворечивости становится яснее, когда теория допускает аксиоматическую формулировку, подобно геометрии Евклида или механике Ньютона. Для большинства аксиоматизированных теорий непротиворечивость доказывается без особого труда.
Есть, однако, теория, в случае которой десятилетия упорнейших усилий не дали ответа на вопрос, является она непротиворечивой или нет. Это математическая теория множеств, лежащая в основе всей математики.
Рассказывают историю про одного владельца собаки, который очень гордился воспитанием своего любимца. На его команду: «Эй! Приди или не приходи!» — собака всегда либо приходила, либо нет. Так что команда в любом случае оказывалась выполненной.
Здесь мы сталкиваемся еще с одним популярным законом логики — законом исключенного третьего. Как и закон противоречия, он устанавливает связь между противоречащими друг другу утверждениями: из двух таких утверждений одно является истинным.
«А или не-А» — или дело обстоит так, как говорится в утверждении А, или так, как говорится в его отрицании. Третьей возможности нет. Человек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, собака выполняет команду или не выполняет и т. п. — других вариантов не существует. Мы можем не знать, противоречива некоторая конкретная теория или нет, но на основе закона исключенного третьего еще до начала исследования мы вправе заявить: она или непротиворечива, или противоречива.
Этот закон с иронией обыгрывается в художественной литературе. Причина иронии понятна: сказать «Нечто или есть, или его нет», значит, ровным счетом ничего не сказать. И смешно, если кто-то этого не знает. В комедии Мольера «Мещанин во дворянстве» есть такой диалог:
«Г-н Журден. …А теперь я должен открыть вам секрет. Я влюблен в одну великосветскую даму, и мне хотелось бы, чтобы вы помогли написать ей записочку, которую я собираюсь уронить к ее ногам.
Учитель философии. Конечно, вы хотите написать ей стихи?
Г-н Журден. Нет, нет, только не стихи.
Учитель философии. Вы предпочитаете прозу?
Г-н Журден. Нет, я не хочу ни прозы, ни стихов.
Учитель философии. Так нельзя: или то, или другое.
Г-н Журден. Почему?
Учитель философии. По той причине, сударь, что мы можем излагать свои мысли не иначе, как прозой или стихами.
Г-н Журден. Не иначе как прозой или стихами?
Учитель философии. Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза».
В известной сказке Л. Кэрролла «Алиса в Зазеркалье» Белый Рыцарь намерен спеть Алисе «очень, очень красивую песню»:
«— Когда я ее пою, все рыдают… или…
— Или что? — спросила Алиса, не понимая, почему Рыцарь вдруг остановился.
— Или… не рыдают…»
В сказке А. Н. Толстого «Золотой ключик, или Приключения Буратино» народный лекарь Богомол заключает после осмотра Буратино:
«— Одно из двух: или пациент жив, или он умер. Если он жив — он останется жив или не останется жив. Если он мертв — его можно оживить или нельзя оживить».
Закон исключенного третьего кажется самоочевидным и трудно представить, что кто-то мог предложить отказаться от него. И тем не менее в современной логике имеются системы, в которых этот закон отбрасывается. Далее об одной из таких систем — интуиционистской логике — пойдет речь.
Очевидное в одно время и в одних обстоятельствах способно потерять свою очевидность в другое время и в свете других обстоятельств. Закон исключенного третьего хорошо демонстрирует справедливость этого наблюдения.
Истинность отрицания равнозначна ложности утверждения. В силу этого закон исключенного третьего можно передать и так: каждое высказывание является истинным или ложным.
Сомнения в универсальности закона
Оба закона — и закон противоречия и закон исключенного третьего — были известны еще до Аристотеля. Он первым дал, однако, их ясные формулировки, подчеркнул важность этих законов для понимания мышления и бытия и вместе с тем выразил определенные сомнения в универсальной применимости второго из них.
«…Невозможно, — писал Аристотель, — чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении (и все другое, что мы могли бы еще уточнить, пусть будет уточнено во избежание словесных затруднений) — это, конечно, самое достоверное из всех начал». Такова формулировка закона противоречия и одновременно предупреждение о необходимости сохранять одну и ту же точку зрения в высказывании и его отрицании «во избежание словесных затруднений». Здесь же Аристотель полемизирует с теми, кто сомневается в справедливости данного закона: «…не может кто бы то ни было считать одно и то же существующим и несуществующим, как это, по мнению некоторых, утверждает Гераклит».
О законе исключенного третьего: «…не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».
От Аристотеля идет также живущая и в наши дни традиция давать закону противоречия, закону исключенного третьего, да и другим логическим законам, три разные интерпретации.
В одном случае закон противоречия истолковывается как принцип логики, говорящей о высказываниях и их истинности: из двух противоречащих друг другу высказываний только одно может быть истинным.
В другом случае этот же закон понимается как утверждение об устройстве самого мира: не может быть так, чтобы что-то одновременно существовало и не существовало. В третьем случае этот закон звучит уже как истина психологии, касающаяся своеобразия нашего мышления: не удается так размышлять о какой-то вещи, чтобы она оказывалась такой и вместе с тем не такой.
Нередко полагают, что эти три варианта различаются между собой только формулировками. На самом деле это совершенно не так. Устройство мира и своеобразие человеческого мышления — темы эмпирического, опытного исследования. Получаемые с его помощью, положения являются эмпирическими истинами. Принципы же логики совершенно иначе связаны с опытом и представляют собой не эмпирические, а логически необходимые истины. В дальнейшем, когда речь пойдет об общей природе логических законов и логической необходимости, недопустимость подобного смешения логики, психологии и теории бытия станет яснее.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!