Искусство мыслить правильно - Александр Ивин
Шрифт:
Интервал:
Законы контрапозиции
Законы контрапозиции говорят о перемене позиций высказываний с помощью отрицания:
— из условного высказывания «Если первое, то второе» вытекает высказывание «Если не второе, то не первое», и наоборот;
— из «Если первое, то не второе» вытекает «Если второе, то не первое»;
— из «Если не первое, то второе» следует «Если не второе, то первое».
Например, из «Если сверкает молния, то гремит гром» следует «Если нет грома, нет и молнии»; из «Если нет причины, нет и следствия» вытекает «Если есть следствие, есть также причина» и т. п.
Контрапозиция — это, выражаясь шахматным языком, рокировка высказываний. Редкая шахматная партия обходится без рокировки и редкое наше рассуждение проходит без использования контрапозиции.
Модус поненс и модус толленс
Два закона, известные еще с глубокой древности, — это так называемые «модус поненс» и «модус толленс». Первый из них позволяет от утверждения условной связи и утверждения ее основания перейти к утверждению ее следствия. Второй говорит, что если следствие правильной условной связи неверно, то неверным является и ее основание. Например, если справедливо, что в случае дождя земля обязательно мокрая, и верно, что идет дождь, то верно, что земля мокрая. Если же верно, что в дождь земля всегда мокрая, а она не является мокрой, то это означает, что дождь не идет.
Другие законы
Шерлок Холмс однажды заметил: «Отбросьте все невозможное, и то, что останется, будет ответом». Имеется в виду закон: «или первое, или второе, или третье; но первое неверно и второе неверно; следовательно, третье».
Еще один логический закон говорит об ошибочных следствиях: «Если первое, то второе или третье, но второе неверно и третье неверно; значит, неверно и первое».
Вот рассуждение, своеобразно комбинирующее два последних закона.
Когда-то халиф Омар вознамерился сжечь богатейшую Александрийскую библиотеку. На просьбу сохранить ее этот религиозный фанатик, сам учившийся на ее книгах, ехидно отвечал, что книги библиотеки либо согласуются с Кораном, либо нет; если они согласуются с Кораном, они излишни и должны быть сожжены; если они не согласуются с Кораном, они вредны и поэтому также должны быть сожжены; следовательно, книги библиотеки в любом случае должны быть сожжены.
Это рассуждение опирается, конечно, на ложную предпосылку. Оно показывает, что фанатик тоже способен быть иногда логичным.
Закон, носящий имя средневекового логика и философа монаха Дунса Скота, характеризует ложное высказывание. Смысл этого закона можно приблизительно передать так: из ложного утверждения высказывания следует какое угодно утверждение. Применительно к конкретным утверждениям это звучит так: если дважды два равно четыре, то если это не так, вся математика ничего не стоит. В подобного рода рассуждениях есть несомненный привкус парадоксальности. Особенно заметным он становится, когда в качестве заключения берется явно ложное и совершенно не связанное с посылками высказывание. Например: если дважды два равно четыре, то если это не так, Луна сделана из зеленого сыра. Явный парадокс! Не все описания логического следования принимают данный закон в качестве правомерного способа рассуждения. Построены, хотя только сравнительно недавно, такие теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми.
Известен анекдот о Расселе, доказавшем своему собеседнику на каком-то вечере, что из того, что два плюс два равно пяти, вытекает, что он, Рассел, — римский папа. В доказательстве использовался закон Дунса Скота.
Отнимем от обеих сторон равенства 2+2=5 по 3. Получим 1=2. Если собеседник утверждает, что Рассел не является римским папой, то этот папа и Рассел — два разных лица. Но поскольку 1=2, папа и Рассел — это одно и то же лицо.
Закон, названный именем еще одного средневекового монаха и логика — Клавия, лежит в основе доказательства путем приведения к абсурду. Этот закон говорит, что если из ложности утверждения вытекает его истинность, то утверждение истинно. К примеру, из утверждения «Всякое мнение, кто бы его ни высказал, истинно» вытекает, что являющееся чьим-то мнением суждение «Некоторые мнения являются ложными» тоже истинно; значит, последнее суждение, а не исходное истинно.
К законам доказательства путем приведения к абсурду относится и принцип, говорящий, что если из утверждения вытекает противоречие, то это утверждение ложно. Например, если из утверждения «Треугольник имеет четыре угла» — выводится как то, что у треугольника три угла, так и то, что у него не три угла, это означает, что исходное утверждение ложно.
Приведенные формулировки законов логики и примеров к этим законам являются весьма неуклюжими конструкциями и звучат они довольно непривычно. И это даже в случае самых простых по своей структуре законов. Естественный язык, использовавшийся в этих формулировках, явно не лучшее средство для данной цели. И дело даже не столько в громоздкости получаемых выражений, сколько в отсутствии ясности и точности в передаче законов.
Мало сказать, что о законах логики трудно говорить, пользуясь только обычным языком. Строго подходя к делу, нужно сказать, что они вообще не могут быть адекватно переданы на этом языке.
Не случайно современная логика строит для выражения своих законов и связанных с ними понятий специальный язык. Этот формализованный язык отличается от обычного языка прежде всего тем, что следует за логической формой и воспроизводит ее даже в ущерб краткости и легкости общения.
Довольно, впрочем, примеров логических законов. Дальнейшие примеры этого рода способны создать ошибочное представление, будто логические законы существуют и могут исследоваться порознь, в какой-то независимости друг от друга и вне определенной системы.
Такое представление было характерно для традиционной логики. Современная логика, описывающая принципы мышления с помощью специально созданного для этого формализованного языка, исследует логические законы только как элементы систем таких законов. Она интересуется при этом не столько отдельными законами, сколько системами в целом.
В подобном подходе нет, в общем-то, ничего оригинального. Всякая научная теория представляет собой систему взаимосвязанных утверждений, упорядоченную, иерархическую структуру, налагающую свой отпечаток на каждое утверждение, входящее в нее. Любое из них, будучи вырвано из системы, перестает быть частью того живого организма, каким она является, и теряет тот сложный и разветвленный смысл, каким она наделяет каждый свой элемент.
В XIX веке получила широкое распространение концепция «расширенной» логики. Ее сторонники резко сдвинули центр тяжести логических исследований с изучения правильных способов рассуждения на разработку проблем теории познания, причинности, вероятностного рассуждения и т. д. В логику были введены темы, интересные и важные сами по себе, но не имеющие к ней прямого отношения. Собственно логическая проблематика отошла на задний план. Вытеснившие ее методологические проблемы трактовались, как правило, упрощенно, без учета динамики научного познания.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!