Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир
Шрифт:
Интервал:
Гипотеза Римана (в геометрической формулировке)
Все нетривиальные нули дзета-функции лежат на критической прямой.
• Нули появляются сопряженными парами. Другими словами, если a + bi — один из нулей, то нулем является и a − bi. Или еще по-другому, если z — один из нулей, то нулем будет и результат его комплексного сопряжения z'. Мы определили «комплексное сопряжение» и обозначения «зет-с-чертой» в главе 11.v. И еще одним способом скажем так: если имеется нуль сверху от вещественной прямой, то его зеркальное отображение снизу от вещественной прямой также будет нулем (верно, разумеется, и обратное).
• Вещественные части нулей симметричны относительно критической прямой, т.е. нуль или имеет вещественную часть, равную 1/2 (в духе Гипотезы Римана), или же представляет собой один из элементов пары с вещественными частями 1/2 + α и 1/2 − α для некоторого вещественного числа α, заключенного между 0 и 1/2, и с одинаковыми мнимыми частями. Примерами могли бы служить вещественные части 0,43 и 0,57 или же вещественные части 0,2 и 0,8. Другой способ сказать то же самое таков: если предположить, что имеется нетривиальный нуль не на критической прямой, то его зеркальный образ при отражении относительно критической прямой также должен быть нулем. Это следует из той формулы в главе 9.vi. Если одна сторона формулы равна нулю, то другая также должна равняться нулю. Не будем рассматривать целые значения буквы s (при которых другие члены в той формуле или ведут себя плохо, или обращаются в нуль); тогда эта формула сообщает, что если ζ(s) равна нулю, то ζ(1 − s) также равна нулю. Тем самым, если (1/2 + α) + it представляет собой нуль дзета-функции, то нулем является и (1/2 − α) − it, а значит, в соответствии с предыдущим пунктом и результат его сопряжения (1/2 − α) + it.
Когда Гильберт выступал со своим докладом, сверх этого было известно немного. Риман предложил еще другую формулу с волной для приближенного числа нулей с мнимой частью между нулем и неким большим числом T (см. главу 16.iv). Однако эту формулу доказали лишь в 1905 году (сделал это фон Мангольдт). Но Гипотезу Римана не забыли совсем. Она мелькает как тема для обсуждения в математической литературе 1890-х годов, например, во французском журнале задач L'lntermédiaire des Mathématiciens. Но по сути дела математики XIX века оставили задачу разбираться с великой и ужасной Гипотезой Бернхарда Римана математикам XX столетия.
IV.
XX столетие было довольно… довольно деятельным столетием. Много чего произошло во всех сферах человеческой жизни. Поэтому в ретроспективе век кажется ужасно долгим, намного дольше, чем просто полторы стандартные протяженности человеческой жизни, в общем-то и составляющие век. Но математика выступает величавой неспешной поступью, и глубокие проблемы, исследуемые современными математиками, выдают свои тайны очень медленно и неохотно. Внутри каждой конкретной математической дисциплины мир также довольно тесен, со своими героями, фольклором и устными традициями, связывающими сообщество воедино как в пространстве, так и во времени. Когда я собирал материал для этой книги, то из разговоров с ныне здравствующими математиками сделал вывод, что XX столетие не так уж далеко простерлось во времени — великие имена, связанные с его началом, находятся от нас все еще «в пределах слышимости».
Например, я пишу эти строки всего неделю спустя после разговоров с Хью Монтгомери, ключевым персонажем в достижениях (о которых будет рассказано в подходящий момент) 70-х и 80-х годов XX века. Хью закончил аспирантуру в Тринити-колледже в Кембридже в конце 1960-х. Среди сотрудников колледжа, которых он знал лично, был Джон Идензор Литлвуд (1885-1977), который в 1914 году получил один из первых значительных результатов, продвигающих вперед наше понимание Гипотезы Римана. «Он пытался убедить меня понюхать пороху с этой задачей», — рассказывает Хью, у которого до сих пор сохранились рукописные записки Литлвуда. Литлвуд теоретически мог бы встретиться и говорить о математике с другом Римана Рихардом Дедекиндом, который дожил до 1916 года, продолжая заниматься математикой практически до самого конца жизни, и который учился у Гаусса! (Мне не удалось выяснить, имела ли такая встреча место в действительности. В реальности она не очень вероятна. Дедекинд ушел на пенсию с поста профессора в Брауншвейгской политехнической школе в 1894 году, после чего, согласно Джорджу Пойа[106], «жил тихой жизнью, встречаясь лишь с очень небольшим числом людей»).
Описываемый период развития математики вызывает сильное ощущение непрерывности, из-за которого меня так и подмывает отбросить строго хронологический подход при рассказе о XX столетии. Это искушение усиливается ввиду характера достижений совершенных в течение этого столетия. История о Гипотезе Римана в XX веке состоит не из одной линии рассказа, а из нескольких нитей, иногда пересекающихся, иногда переплетающихся друг с другом. Здесь требуется маленькое предварительное объяснение; а объяснение само по себе требует предисловия — замечания о том, как математика развивалась в период с 1900 по 2000 год.
V.
Если не считать парижского доклада Гильберта, то 1900 год, конечно, представляет собой произвольную отметку во времени. Математика развивалась равномерно и непрерывно на протяжении всего современного периода. Математики не отправлялись домой с новогодних вечеринок в первые часы 1 января 1900 года (или, если вам больше нравится, 1901 — см. главу 6.ii) с мыслями: «Ага! Уже XX столетие! Нам надо переходить на более высокий уровень абстракции!» — по крайней мере, не в большей степени, чем европейцы, проснувшиеся утром 30 мая 1453 года, думали: «Средние века закончились! Надо бы заняться книгопечатанием, усомниться в авторитете Папы и отправиться открывать Новый Свет!» Мне бы очень не хотелось оказаться в ситуации, когда перед судом моих коллег мне пришлось бы обосновывать термин «математика XX века».
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!