📚 Hub Books: Онлайн-чтение книгДомашняяПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Шрифт:

-
+

Интервал:

-
+
1 ... 60 61 62 63 64 65 66 67 68 ... 121
Перейти на страницу:

Навязчивая идея захватывала различных математиков различными способами, сообразно их математическим наклонностям. Поэтому в течение столетия развивалось несколько направлений — различных подходов к исследованию Гипотезы, у истоков каждого из которых стояла какая-то одна личность, затем передававшая эстафету другим, причем пути этих исследований порой пересекались и перепутывались друг с другом. Например, в рамках вычислительного направления усилия математиков были направлены на явное вычисление все большего и большего количества нулей и на усовершенствованию методов для таких вычислений. Было и алгебраическое направление, инициированное Эмилем Артином в 1921 году в попытке доказать Гипотезу Римана фланговым маневром через раздел алгебры, называемый теорией полей; позднее в том же столетии замечательная встреча двух людей, о которой я расскажу в свое время, привела к возникновению физического направления, соотносящего Гипотезу с математикой, управляющей физикой элементарных частиц. И пока все это продолжалось, специалисты по аналитической теории чисел не прекращали своих усилий, продолжая заложенную самим Риманом традицию по изучению Гипотезы средствами теории функций комплексной переменной.

Исследование простых чисел самих по себе тем временем шло своим чередом, без особенных приложений к Гипотезе, но все же с часто выражаемой надеждой, что новые результаты о распределении простых чисел прольют свет на причину, по которой Гипотеза на самом деле верна — или, если уж так случится, неверна. Ключевыми продвижениями здесь явились развитие в 1930-х годах вероятностной модели для распределения простых чисел и данное в 1949 году Сельбергом «элементарное» доказательство Теоремы о распределении простых чисел, рассмотренной в главе 8.iii.

Рассказывая об этих достижениях, я буду стараться, чтобы в каждый данный момент было ясно, какое из направлений рассматривается, хотя временами ради поддержания общей хронологии рассказа придется перескакивать с одного на другое. Начнем с небольшого вступительного замечания о «вычислительном» направлении, ибо оно проще всего для понимания нематематиками. Каковы в реальности значения — числовые значения — нетривиальных нулей дзета-функции? Как их можно вычислить? И если взять их все вместе, то каковы будут их статистические свойства?

VIII.

Первые конкретные сведения о нулях были получены датским математиком Йоргеном Грамом, вскользь упоминавшимся в главе 10. Будучи математиком-любителем, не работавшим ни в каком университете (а работавшим, подобно поэту Уоллесу Стивенсу, управляющим страховой компанией), Грам, похоже, в течение нескольких лет забавлялся с методами, позволяющими реально вычислять положения нетривиальных нулей (происходило это, понятно, задолго до эры компьютеров). В 1903 году, остановившись на достаточно эффективном методе, он опубликовал список 15 «первых» нулей — тех, которые расположены выше вещественной оси и лежат ближе всего к ней. На рисунке 12.2 грамовские нули показаны жирными точками на критической прямой. Его список, содержавший кое-какие неточности в последних из приведенных знаков после запятой, начинался как

1/2 + 14,134725i, 1/2 + 21,022040i, 1/2 + 25,010856i, ….
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 12.2. Грамовские нули.

Каждый из выписанных нулей, как видно, имеет вещественную часть, равную одной второй.[110] (А кроме того, существование каждого из корней предполагает и существование сопряженного, расположенного под вещественной осью: 1/2 − 14,134725i и т.д. Я буду считать этот факт само собой разумеющимся и не буду упоминать его специально до главы 21, когда он снова станет важным.) Поэтому в тех пределах, докуда они простираются, эти нули подтверждают справедливость Гипотезы Римана. Однако простираются они не слишком далеко. Известным фактом про число нулей — неявно содержавшимся в работе Римана 1859 года — было то, что число их бесконечно. Все ли они имеют вещественную часть, равную одной второй? Риман полагал, что дело так и обстоит — в этом-то и состояла его мощная Гипотеза. Но в тот момент никто не знал, как к этому подступиться.

После появления списка Грама математики, должно быть, взирали на него со священным ужасом. Тайна распределения простых чисел, которая удерживала на себе внимание математиков со времен легендарного Гаусса, оказалась каким-то образом заключенной в перечне чисел: 1/2 + 14,134725i, 1/2 + 21,022040i, 1/2 + 25,010856i, …. Но как?! Их вещественные части, без сомнения, равняются одной второй, как и предполагал Риман; однако мнимые части не проявляют никакого очевидного порядка или системы.

Я только что сказал: «Математики, должно быть…» Мне надо было бы сказать: «Несколько математиков в континентальной Европе, должно быть…» Одержимость Гипотезой Римана, захватившая математиков в течение XX столетия, в 1905 году только набирала силу. Во многих частях света о ней толком и не знали. В следующей исторической части нашего повествования мы с читателем отправимся в Англию, в период эдвардианского расцвета ее имперской славы. Но сначала позвольте показать вам, как же на самом деле выглядит дзета-функция.

Глава 13. Муравей Арг и муравей Знач

I.

Предположим, что, как я и пытался вас убедить, комплексные числа представляют собой простое и понятное расширение обычных вещественных чисел и подчиняются всем обычным правилам арифметики с тем единственным добавлением, что i2 = −1; кроме того, вспомним, что функции занимаются тем, что превращают числа из одной области — своей области определения — в числа из другой области; так вот, есть ли какая-нибудь причина, которая препятствует существованию функций от комплексных чисел? Никаких таких причин нет.

Функция возведения в квадрат, например, прекрасно работает для комплексных чисел в соответствии с правилами умножения. Скажем, квадрат числа −4 + 7i есть (−4 + 7i)×(−4 + 7i), что равно 16 − 28i − 28i + 49i2, т.е. −33 − 56i. В таблице 13.1 показан «моментальный снимок» функции возведения в квадрат для некоторых случайным образом выбранных комплексных чисел.[111]

1 ... 60 61 62 63 64 65 66 67 68 ... 121
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?