Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио
Шрифт:
Интервал:
Рис. 62
Рис. 63
Рис. 64
Платон обогатил мистический смысл золотого сечения дополнительными обертонами. Древние греки полагали, что все во Вселенной состоит из четырех стихий – земли, воды, воздуха и огня. В «Тимее» Платон попытался объяснить структуру вещества на основании пяти правильных многогранников, которые впоследствии были названы в его честь платоновыми телами (рис. 65). Это выпуклые тела – тетраэдр, куб, октаэдр, икосаэдр и додекаэдр – единственные, у которых все грани (у каждого многогранника по отдельности) одинаковы и представляют собой правильные многоугольники, а все вершины лежат на сфере. Каждое из первых четырех тел Платон связывал с определенной стихией: земля ассоциировалась с устойчивым кубом, всепроникающий огонь – с острым тетраэдром, воздух – с октаэдром, а вода – с икосаэдром. А о додекаэдре (рис. 65, d) Платон в «Тимее» писал: «В запасе оставалось еще пятое многогранное построение, его бог определил для Вселенной и прибегнул к нему в качестве образца» (пер. С. Аверинцева). Итак, додекаэдр отражал вселенную в целом. Обратите внимание, что додекаэдр, обладающий двенадцатью пятиугольными гранями, прямо-таки воплощает в себе золотое сечение. И его объем, и площадь поверхности можно выразить в виде простых равенств с участием золотого сечения (так же обстоят дела и с икосаэдром).
То есть исторический опыт показывает, что методом многочисленных проб и ошибок пифагорейцы и их последователи открыли способы строить определенные геометрические фигуры, которые для них воплощали важные понятия вроде любви и космоса. Тогда неудивительно, что и они, и Евклид, задокументировавший эту традицию, изобрели понятие золотого сечения, необходимого для этих построений, и дали ему название. В отличие от любого другого произвольного соотношения, число 1,618… стало предметом пристального изучения с богатой и интересной историей и даже в наши дни то и дело заявляет о себе в самых неожиданных местах. Например, спустя две тысячи лет после Евклида немецкий астроном Иоганн Кеплер открыл, что это число – чудесным образом – имеет отношение к последовательности чисел под названием числа Фибоначчи. Последовательность Фибоначчи – 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,… – характерна тем, что каждый ее член, начиная с третьего, представляет собой сумму двух предыдущих (2 = 1 + 1; 3 = 1 + 2; 5 = 2 + 3 и так далее). А если поделить любой член последовательности на непосредственно предшествующий (например, 144 ÷ 89; 233 ÷ 144 и так далее), окажется, что отношения колеблются в окрестности золотого сечения, причем чем больше члены последовательности, тем ближе их отношения к золотому сечению. Например, при округлении до шестого знака после запятой у нас получатся следующие числа: 144 ÷ 89 = 1,617978; 233 ÷ 144 = 1,618056; 377 ÷ 233 = 1,618026 и так далее.
Рис. 65
В новое время выяснилось, что числа Фибоначчи и, соответственно, золотое сечение описывают расположение листьев на стеблях некоторых растений – это явление называется филлотаксис – и структуру кристаллов некоторых алюминиевых сплавов.
Почему я считаю определение золотого сечения, которое дал Евклид, изобретением? Потому что изобретательство Евклида выделило это соотношение из общей массы и привлекло к нему внимание математиков. С другой стороны, в Китае, где понятие золотого сечения не было изобретено, в математической литературе нет никаких упоминаний ни о чем похожем. В Индии, где его опять же не изобрели, оно вскользь затронуто лишь в нескольких второстепенных тригонометрических теоремах.
Примеров, которые показывают, что вопрос «Что есть математика – изобретение или открытие?» некорректно сформулирован, можно найти множество. Наша математика – это сочетание изобретений и открытий. Аксиомы евклидовой геометрии как понятия были изобретением, как и, скажем, правила игры в шахматы. Кроме того, аксиомы были дополнены различными изобретенными понятиями – треугольниками, параллелограммами, эллипсами, золотым сечением и тому подобным. А теоремы евклидовой геометрии, напротив, по большей части представляют собой открытия: это пути, связывающие разные понятия. В некоторых случаях доказательства приводили к формулировке новых теорем – математики изучали, что можно доказать, и из этого выводили теоремы. В других, как описано в «Методе» Архимеда, они сначала находили ответ на заинтересовавший их вопрос, а потом уже работали над доказательством.
Понятия – это, как правило, изобретения. Простые числа как понятие были изобретены, однако все теоремы о простых числах – открытия[158]. Математики древнего Вавилона, Египта и Китая не изобрели понятие простых чисел, хотя их математика достигла огромных успехов. Можно ли сказать, что они просто не «открыли» простые числа? Не в большей степени, чем заявить, что в Великобритании не «открыли» единую кодифицированную конституцию. Государство способно выжить и без конституции – и математика способна развиваться без понятия простых чисел. Так и получилось!
А известно ли нам, почему греки изобрели понятия вроде аксиом и простых чисел? Конечно, наверняка сказать нельзя, но можно предположить, что это произошло в ходе неустанных попыток исследовать самые фундаментальные составляющие Вселенной. Простые числа – это строительный материал чисел, точно так же как атомы – это строительный материал вещества. Подобным же образом аксиомы были источником, из которого должны вытекать все геометрические истины. Додекаэдр символизировал Вселенную в целом, а золотое сечение послужило понятием, благодаря которому этот символ был воплощен.
Все это говорит еще об одном интересном аспекте математики: она часть человеческой культуры. Стоило грекам изобрести аксиоматический метод, как все их последователи, европейские математики, тут же взяли с них пример и переняли у них эту систему представлений и практических приемов. Антрополог Лесли А. Уайт (1900–1975) как-то раз лаконично охарактеризовал этот культурный аспект (White 1947): «Если бы Ньютон вырос среди готтентотов [южноафриканское племя], он и считал бы по-готтентотски». Культурная составляющая математики, скорее всего, отвечает и за то, что многие математические открытия (например, инварианты узла) и даже некоторые крупные изобретения (например, математический анализ) были сделаны одновременно несколькими независимыми учеными.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!