📚 Hub Books: Онлайн-чтение книгИсторическая прозаЭйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон

Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон

Шрифт:

-
+

Интервал:

-
+
1 ... 71 72 73 74 75 76 77 78 79 ... 185
Перейти на страницу:

Гильберт на следующий день ответил любезным и весьма великодушным письмом, из которого следовало, что он не оспаривает приоритета Эйнштейна. “Сердечные поздравления по поводу решения проблемы движения перигелия, – писал он. – Если бы я мог считать так быстро, как вы, в моих уравнениях электрон должен был бы капитулировать, и атому водорода пришлось бы писать записку с объяснениями, почему он не излучает”81.

Тем не менее на следующий день, 20 ноября, Гильберт послал статью в “Геттингенский научный журнал” с описанием своей версии уравнений общей теории относительности. Для своей статьи он выбрал не самое скромное название: “Основание физики”.

Неясно, насколько внимательно Эйнштейн прочитал статью, которую Гильберт послал ему, или что в ней повлияло на ход его мыслей, если вообще повлияло, когда он лихорадочно готовил свою кульминационную четвертую лекцию для Прусской академии. Как бы ни было дело, сделанные неделей ранее расчеты по орбите Меркурия и по искривлению лучей света помогли ему понять, что он мог избежать ограничений и условий на координаты, которых он требовал от своих уравнений гравитационного поля. Таким образом, к 25 ноября 1915 года – как раз к его последней лекции, называвшейся “Полевые уравнения гравитации”, – он подготовил систему ковариантных уравнений, увенчавших его общую теорию относительности.

Для неспециалиста этот результат был совсем не таким ярким, как, скажем, его знаменитое уравнение E = mc2. Тем не менее длинные сложные выражения оказалось возможно упростить с помощью компактной записи тензоров с индексами, и суть окончательных полевых уравнений Эйнштейна можно записать в таком компактном виде, что их можно печатать на футболках пижонистых студентов-физиков (что часто и делается). В одном из многочисленных его вариантов82 уравнение можно записать в виде:

Rμν– 1/2gμν R=8πTΜΝ.

В левой части уравнения стоит величина Rμν – тензор Риччи, который Эйнштейн ввел ранее; gμν – крайне важный метрический тензор, а член R является следом тензора Риччи и называется скаляром Риччи. Всю левую часть уравнения сейчас принято называть тензором Эйнштейна, и она может быть записана в сжатом виде просто как Gμν. Она несет всю информацию о том, как пространство – время деформируется и искривляется массивными объектами.

Правая часть описывает движение материи в поле тяготения. Взаимодействие правой и левой частей уравнения показывает, как объекты искривляют пространство – время и, в свою очередь, как эта кривизна влияет на движение объектов. Физик Джон Уилер выразил это так: “Материя говорит пространству – времени, как изогнуться, а искривленное пространство говорит материи, как двигаться”83.

Таким образом, вместе они танцуют космическое танго, или, как сформулировал это другой физик, Брайан Грин, “пространство и время стали игроками в эволюционирующем космосе. Они ожили. Материя здесь заставляет пространство деформироваться там, что вызывает движение материи здесь, а это, в свою очередь, побуждает пространство поодаль деформироваться еще больше, и т. д. Общая теория относительности стала хореографом постановки причудливого космического танца пространства, времени, материи и энергии”84.

Наконец, к его удовлетворению, у Эйнштейна появились по-настоящему ковариантные уравнения, в которые включены по крайней мере все формы движения – как инерционное, так и ускоренное, вращательное и произвольное. Как он заявил в официальной презентации своей теории, которую он опубликовал в марте следующего года в Annalen der Physik, “общие законы природы должны быть выражены через уравнения, справедливые во всех системах координат, то есть эти уравнения должны быть ковариантными относительно любых подстановок (общековариантными)”[54],85

Эйнштейн был в восторге от своего успеха, но в то же время беспокоился, что Гильберт, который представил в Геттингене свою собственную версию уравнений на пять дней раньше, получит часть почестей как соавтор теории. “Только один коллега в действительности понял ее, – писал он своему другу Генриху Цангеру, – и он ищет умные способы присвоения (нострификации – по выражению Абрагама)[55]. Исходя из моего личного опыта я вряд ли узнаю что-то новое об убогости человечества”. В письме к Бессо через несколько дней он добавил: “Мои коллеги ведут себя омерзительно в этом деле. Ты здорово повеселишься, когда я расскажу тебе об этом”86.

Так кто на самом деле заслуживает заслуги быть первым в выводе окончательных математических уравнений? Вопрос, кому принадлежит приоритет, Эйнштейну или Гильберту, породил небольшие, но горячие исторические дискуссии, некоторые из которых ведутся с такой страстью, что кажутся выходящими за рамки простого научного любопытства. Гильберт представил версию уравнений в докладе 16 ноября и статье, датированной 20 ноября, то есть раньше Эйнштейна, представившего свои окончательные уравнения 25 ноября. Тем не менее команда учеников Эйнштейна в 1997 году разыскала часть верстки статьи Гильберта, в которую Гильберт внес изменения и затем отправил обратно в издательство 16 декабря. В оригинальной версии уравнения Гильберта отличались в небольшом, но важном пункте от окончательной версии уравнений из лекции Эйнштейна 25 ноября. Они не были на самом деле общековариантными, и ими не предусматривалась свертка тензора Риччи и введение в уравнение его следа – скаляра Риччи. Эйнштейн сделал это в своей лекции от 25 ноября. По-видимому, Гильберт внес исправление в пересмотренный вариант статьи, для того чтобы он соответствовал версии Эйнштейна. Во внесенных исправлениях, когда он описывал гравитационные потенциалы, он великодушно добавил замечание “впервые введены Эйнштейном”.

Защитники приоритета Гильберта (и недоброжелатели Эйнштейна) на указания на исправления в его верстке парировали разными аргументами, в том числе тем, что в верстке отсутствует одна часть и что введение следа, о котором шла речь, либо не нужно, либо очевидно.

Справедливости ради надо сказать, что оба ученых до некоторой степени независимо получили в ноябре 1915 года математические уравнения, которые явились формальным выражением общей теории, хотя каждый из них знал, что делает другой. Судя по исправлениям, внесенным Гильбертом в его собственную верстку, Эйнштейн, видимо, опубликовал окончательный вариант этих уравнений первым. И в конце концов, сам Гильберт отказался в пользу Эйнштейна от приоритета и почестей.

В любом случае, не вызывало сомнений, что теория, описываемая этими уравнениями, была построена Эйнштейном и объяснена им Гильберту тем летом во время их встречи в Геттингене. Даже физик Кип Торн, один из тех, кто считал, что Гильберт первый вывел правильные уравнения поля, тем не менее говорит, что Эйнштейн заслуживает чести быть признанным автором теории, лежащей в основе уравнений. “Гильберт выполнил несколько последних математических действий [для вывода уравнений] независимо и почти одновременно с Эйнштейном, но Эйнштейн проделал практически все предшествующие действия, – отмечает Торн. – Без Эйнштейна общие релятивистские законы гравитации могли бы не быть обнаруженными еще несколько десятилетий”87.

1 ... 71 72 73 74 75 76 77 78 79 ... 185
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?