Маленькая книга о черных дырах - Франс Преториус
Шрифт:
Интервал:
Второй существенный аспект влияния вращения черной дыры на геометрию заключается в том, что пространство-время само по себе начинает «течь» вокруг черной дыры, и тем быстрее, чем ближе объект к горизонту. Мы еще объясним более подробно, что мы понимаем под «течением» пространства-времени, через описание его влияния на геодезические траектории, но пока что удачной аналогией выглядят потоки воздуха во время торнадо. В этой аналогии воздух представляет собой пространство-время, а по геодезическим летят частицы пыли (или несчастные коровы), подхваченные смерчем и носимые вокруг его воронки. Мы уже говорили, что в контексте пространства-времени этот эффект называется «увлечением системы отсчета». Это явление свойственно не только черным дырам; вращение Земли приводит к такому же «увлечению», но по сравнению с черной дырой его величина исчезающе мала (настолько, что ею могут пренебречь спутники системы GPS, и лишь недавно она была измерена в сверхчувствительных экспериментах с участием спутников Gravity Probe B и LAGEOS).
Чтобы исследовать последствия «увлечения системы отсчета», давайте снова запустим наши верные спутники-зонды, сбросив их из состояния покоя в точке, расположенной на большом расстоянии от керровской черной дыры, и проследим с их помощью структуру ее геодезических. Для шварцшильдовской черной дыры, сферически симметричной и невращающейся, нет ничего особенного в том, чтобы построить плоскость, проходящую через ее центр, определить ее как экваториальную и наметить две точки на горизонте событий к северу и к югу от плоскости экватора, которые будут ее полюсами: любая ориентация плоскости экватора ничем не будет отличаться от какой-либо другой. Для вращающегося объекта, такого как керровская черная дыра, естественно определить северный и южный полюсы как точки на горизонте, лежащие на оси вращения черной дыры, а плоскость экватора как проходящую под углом 90° к этой оси. Из-за увлечения системы отсчета и осесимметричности керровской черной дыры теперь будет иметь значение, под каким углом относительно оси вращения лежит точка, из которой мы выпустили наши зонды. Возьмем два крайних случая: один зонд выпущен прямо к одному из полюсов черной дыры (неважно, северному или южному), а другой вдоль экватора. В пространстве-времени Шварцшильда между ними не было бы никакой разницы: оба зонда падали бы радиально, как было описано в главе 3. В пространстве-времени Керра с зондом, падающим на полюс, происходит то же самое, хотя точная скорость изменения гравитационного замедления времени и красного смещения в процессе падения зонда, измеренная с точки зрения удаленного наблюдателя, будет отличаться от скорости шварцшильдовского случая. Но для зонда, падающего на экватор, все будет совершенно по-другому. Сначала он будет падать радиально, но по мере приближения к горизонту вращение черной дыры начнет увлекать зонд вокруг нее. И если смотреть издали, его траектория будет выглядеть как сжимающаяся спираль в плоскости экватора, все теснее и теснее закручивающаяся вокруг горизонта, прижимающаяся к нему все теснее и теснее, так его и не пересекая.
Рис. 4.1. Влияние увлечения системы отсчета на падение по геодезической в керровскую черную дыру. Показана геодезическая, по которой происходит падение в керровскую черную дыру; слева (справа), частица имеет положительный (отрицательный) момент импульса по отношению к направлению вращения черной дыры.
Световые сигналы от зонда будут краснеть и испытывать замедление времени в соответствии с решением Шварцшильда. Но теперь будет казаться, что они выходят из некоторой точки на горизонте, вращающейся с фиксированной угловой скоростью. Для зондов, сброшенных под любым углом, эта скорость была бы одинаковой, хотя у горизонта они все оказались бы в соответственно различных положениях по долготе. Наблюдения углового движения падающих зондов – один из способов измерить скорость вращения черной дыры.
Наблюдатель, находящийся на падающем извне зонде, заметил бы, что он начинает вовлекаться в движение вокруг черной дыры. Как и в шварцшильдовском пространстве-времени, он достигнет горизонта и пересечет его за конечное время, которое он сможет измерить по своим часам. Таким образом, все еще существует бесконечная степень несоответствия между скоростью хода времени для наблюдателя, пересекающего горизонт, и для удаленного наблюдателя. Больше того, к моменту, когда наблюдатель на зонде пересечет горизонт, с его точки зрения он сделает это, совершив конечное число оборотов. А внешний наблюдатель никогда не увидит, как зонд пересечет горизонт: с его точки зрения, зонд будет все теснее прижиматься к горизонту, бесконечно продолжая обращаться вокруг него с постоянной угловой скоростью. Так что и здесь мы снова сталкиваемся с бесконечным несоответствием между локальными и удаленными измерениями количества оборотов зонда вокруг оси вращения черной дыры.
Воздействие увлечения системы отсчета на орбиту более сложную, чем только что описанное свободное падение на экватор или полюс, можно описать, используя понятие прецессии плоскости орбиты. Для шварцшильдовской черной дыры любое орбитальное движение вокруг нее по геодезической происходит в фиксированной двумерной плоскости, проходящей через центр черной дыры. Мы будем называть эту плоскость орбитальной. Как уже говорилось в главе 3, эллипс орбиты прецессирует в этой плоскости, но из нее никогда не выходит. Вблизи керровской черной дыры увлечение системы отсчета приводит к тому, что орбитальная плоскость начинает вращаться, или прецессировать, вокруг оси вращения черной дыры. Скорость этой прецессии зависит и от скорости вращения самой черной дыры, и от наклона орбиты к плоскости экватора дыры, и от того, насколько близко к черной дыре находится зонд. Если орбита лежит в плоскости экватора, она так в ней и останется, в то время как плоскости орбит, проходящих над полюсами черной дыры, испытывают наибольшую прецессию. Если орбита проходит далеко от черной дыры, прецессия будет очень небольшой, независимо от наклона орбиты или спина черной дыры. Так что и в этом случае, как и для шварцшильдовских черных дыр, на очень больших расстояниях от черной дыры динамика орбиты хорошо описывается ньютоновской физикой. Если взять другую крайность – очень близкую орбиту, прецессия ее плоскости будет наиболее выраженной в случае вихревых орбит, особенно при «бреющем полете». Тогда, вместо того чтобы описывать круги вокруг черной дыры в одной и той же плоскости, зонд будет постепенно менять плоскость обращения в интервале между некоторыми фиксированными широтами на сфере выше и ниже экватора. При изначальном совпадении плоскости орбиты зонда с плоскостью экватора плоскость вращения зонда меняться не будет, а если начальная орбита будет в плоскости полюсов черной дыры, то из-за прецессии траектории оборотов зонда постепенно заполнят всю сферу.
Увлечение системы отсчета будет влиять и на негеодезические траектории зонда (то есть при движении с включенными двигателями). Вблизи горизонта в эргорегионе увлечение системы отсчета будет таким сильным, что на всех времениподобных и нулевых траекториях зонд будет вынужден обращаться вокруг черной дыры в том же направлении, в каком вращается она сама. Если вы находитесь вне горизонта, но внутри эргорегиона, то даже если ваши двигатели будут работать на полную мощность в направлении, противоположном направлению вращения черной дыры, вы все равно будете вовлечены в движение вокруг нее в направлении ее вращения, какой бы ни была мощность ваших двигателей. Поверхность, ограничивающая эргорегион, – эргосфера – является сплющенной копией горизонта, касаясь его в точках полюсов и выпячиваясь наружу в наибольшей степени вокруг экватора (рис. 4.3 на с. 156). Чем быстрее вращается черная дыра, тем сильнее выпячивается экваториальный пояс эргосферы. Интересно, что существует предел скорости вращения черной дыры, и если она вращается на этой предельной скорости, то называется экстремальной. У экстремальных керровских черных дыр экваториальное утолщение эргосферы достигает двойного радиуса горизонта. Внутри эргосферы все частицы должны двигаться вокруг черной дыры в одном и том же направлении, хотя это движение может быть более или менее быстрым в зависимости от того, где частица находится в эргосфере и действуют ли на нее другие силы, кроме тяготения. Если подойти очень близко к горизонту, то, с точки зрения внешнего наблюдателя, замедление времени и увлечение системы отсчета будут действовать совместно, так, что все частицы будут обращаться по своим траекториям, геодезическим или нет, с той же угловой скоростью, что и сам горизонт.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!