Приключения Алисы в Стране Головоломок - Рэймонд М. Смаллиан
Шрифт:
Интервал:
В течение нескольких часов Алиса буквально засыпала его вопросами и в конце концов собрала огромный объем информации, которую старательно записала в свой блокнот. Затем она отправилась со всем этим к Шалтаю-Болтаю, надеясь, что тот поможет ей как-то в этом разобраться.
— Что ж, все логично, — прокомментировал Шалтай-Болтай Алисины записи, — вполне логично!
— Что вы хотите этим сказать? — спросила Алиса. — Этот Белый Рыцарь — лжец?
— Белые Рыцари никогда не лгут, — возразил Шалтай-Болтай.
— Тогда я ничего не понимаю, — сдалась Алиса. — Абсолютно ничего!
— Ну, разумеется, — презрительно фыркнул Шалтай-Болтай, — ты ведь не владеешь зазеркальной логикой!
— Что это, зазеркальная логика?
— Это такая логика, которой пользуются зазеркальные логики, — ответил он.
— А кто такие зазеркальные логики? — спросила Алиса.
— Как кто? Те, кто пользуются зазеркальной логикой, — ответил Шалтай-Болтай. — Неужели нельзя было самой догадаться?
Алиса задумалась. Почему-то это объяснение ей не слишком помогло.
— Дело в том, — продолжал Шалтай-Болтай, — что в наших краях есть те, кого называют зазеркальными логиками. Их высказывания кажутся довольно странными, но это если не знать ключа — а ключ довольно прост. Как только будешь знать ключ, все сразу встанет на свои места.
— А что это за ключ? — Алиса буквально сгорала от любопытства.
— Так я тебе сразу и раскрыл ключ! Вместо этого я дам тебе несколько подсказок. На самом деле, я скажу тебе пять основных условий, которым должен отвечать любой зазер-кальный логик. Из этих условий ты сможешь вывести ключ. Вот они:
Условие первое. Зазеркальный логик кристально честен. Он будет утверждать только лишь и исключительно то, в чем сам убежден.
Условие второе. Всякий раз, утверждая, что то или иное суждение истинно, зазеркальный логик одновременно утверждает, что сам он не убежден в истинности этого суждения.
— Минуточку, — прервала его Алиса. — А вы не противоречите самому себе? Ведь согласно первому условию зазеркальный логик всегда честен. Раз это так, то если он утверждает, что суждение истинно, он должен быть сам убежден в его истинности. Как же иначе, не солгав, может он утверждать, что не убежден в истинности этого суждения?
— Хороший вопрос, — ответил Шалтай-Болтай. — Однако прошу заметить, что я никогда не говорил, что зазеркальный логик всегда точен в своих высказываниях! Если он в чем-то убежден, это вовсе не означает, что он знает, что он в этом убежден, и это даже не означает, что он обязательно убежден в том, что он в этом убежден. Более того, вполне может случиться так, что он ошибочно убежден в том, что он в этом не убежден.
— Вы хотите сказать, — изумилась Алиса, — что кто-то может быть в чем-то убежден, и при этом быть убежденным в том, что он в этом не убежден?
— Если это зазеркальный логик, то запросто, — ответил Шалтай-Болтай, — на самом деле у зазеркальных логиков это самое обычное дело, ведь это прямое следствие первых двух условий.
— Как это? — спросила Алиса.
— А вот как, — ответил Шалтай-Болтай. — Предположим, он убежден в истинности суждения. Тогда, согласно первому условию, он заявляет, что суждение истинно. Согласно же второму условию, он заявляет, что не убежден в истинности суждения. Отсюда следует, опять-таки согласно первому условию, что он должен быть убежден в том, что он не убежден в истинности суждения.
— Впрочем, — заметил Шалтай-Болтай, — я даю тебе слишком много подсказок! Позволь мне закончить список условий, чтобы ты смогла вывести ключ ко всей загадке.
Третье условие. В отношении любого истинного суждения, он (зазеркальный логик) всегда утверждает, что убежден в истинности этого суждения.
Четвертое условие. Если зазеркальный логик в чем-то убежден, он не может быть одновременно убежден в обратном.
Пятое условие. В отношении любого суждения, зазеркальный логик либо убежден в истинности этого суждения, либо убежден в истинности противоположного ему суждения.
— Итак, — довольно высокопарно произнес Шалтай-Болтай, — я снабдил тебя полным списком условий. Исходя из них, ты должна быть способна логически вывести, какие суждения зазеркальный логик считает истинными, а какие суждения он считает ложными. А теперь, чтобы убедиться, что ты все поняла, я задам тебе несколько наводящих вопросов.
Вопрос первый. Предположим, зазеркальный логик считает, что Черный Король спит. Считает ли он, что ты снишься Черному Королю, или он так не считает?
— Да откуда же я могу об этом знать? — вскричала Алиса.
— Должна знать, — сухо ответил Шалтай-Болтай. — Ответ напрямую следует из условий, но как именно, я объясню тебе попозже. А пока позволь мне задать тебе другой вопрос.
Вопрос второй. Предположим, зазеркальный логик считает, что либо Черный Король спит, либо Черная Королева спит. Следует ли отсюда, что он считает, что Черная Королева спит?
— Не понимаю, почему это должно следовать?
— Именно это и следует, — ответил Шалтай-Болтай, — а вот почему, я объясню тебе чуть позже. А ты пока попробуй ответить на такой вопрос.
Вопрос третий. Предположим, что зазеркальный логик считает, что Черный Король спит. Должен ли он считать, что Черная Королева тоже спит?
— Да с какой же стати он должен так считать? — спросила Алиса, совершенно сбитая с толку.
— Хороший вопрос, — ответил Шалтай-Болтай, — и чуть позже мы его обсудим. А пока попробуй ответить на следующий вопрос.
Вопрос четвертый. Предположим, зазеркальный логик
считает, что Черный Король спит. Должен ли он при этом считать, что Черный Король и Черная Королева оба спят?
— А разве это не тот же самый вопрос, что и предыдущий? — озадаченно спросила Алиса. — Если он считает, что Черный Король спит, то разве это не одно и то же: считать что и Черная Королева тоже спит, и считать, что оба они спят?
— Совершенно не одно и то же, — безапелляционно заявил Шалтай-Болтай.
— Но почему? — беспомощно спросила Алиса.
— Это я тебе позже объясню, — пообещал Шалтай-Болтай. А пока попробуй ответить на другой вопрос.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!