📚 Hub Books: Онлайн-чтение книгДомашняяВеличайшие математические задачи - Йен Стюарт

Величайшие математические задачи - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+
1 ... 45 46 47 48 49 50 51 52 53 ... 100
Перейти на страницу:

Пуанкаре вывел эту неизбежную путаность при помощи некоторых других методов, над которыми работал в то время. Эти методы давали возможность описать решения дифференциальных уравнений, не решая их. Его «качественная теория дифференциальных уравнений» стала зерном, из которого выросла современная нелинейная динамика. Основной идеей, которая легла в основу новой теории, было исследование геометрии решений, точнее, их топологии — темы, глубоко интересовавшей Пуанкаре (см. главу 10). В такой интерпретации положения и скорости тел представляют собой координаты в многомерном пространстве. По мере того как идет время, первоначальное состояние системы движется в этом пространстве по некоей криволинейной траектории. Топология этого пути или даже системы всех возможных путей могут рассказать нам много полезного о решениях.

Периодическое решение, к примеру, представляет собой замкнутую траекторию в форме петли. По ходу времени состояние системы вновь и вновь проходит по этой траектории, бесконечно повторяя одно и то же поведение. Тогда и система является периодической. Пуанкаре предположил, что для удобного поиска подобных петель удобно было бы провести многомерную поверхность так, чтобы она рассекла петлю. Мы сегодня называем такую поверхность сечением Пуанкаре. Решения, берущие начало на этой поверхности, могут со временем вернуться на нее. Сама петля при этом возвращается в точности в ту же точку, а решения, проходящие через ближайшие к этой точки, всегда возвращаются на наше сечение примерно через один период. Так что периодическое решение можно интерпретировать как неподвижную точку на «отображении первого возвращения». Это отображение сообщает нам, что происходит с точками поверхности, когда они в первый раз на нее возвращаются, если, конечно, возвращаются. Это может показаться не ахти каким достижением, но такой подход снижает размерность пространства — число переменных в задаче. А это почти всегда хорошо.

Значение великолепной идеи Пуанкаре становится понятно, когда мы переходим к следующему по сложности типу решения — комбинации нескольких периодических движений. Вот простой пример такого движения: Земля обходит вокруг Солнца примерно за 365 дней, а Луна обходит вокруг Земли примерно за 27 дней. Так что движение Луны совмещает в себе эти два разных периода. Разумеется, весь смысл задачи трех тел заключается в том, что это описание не совсем точно, но «квазипериодические» решения такого рода часто встречаются в задачах с участием многих тел. Сечение Пуанкаре помогает распознать квазипериодические решения: когда они возвращаются к интересующей нас поверхности, то не попадают в точности в ту же точку, но точка, в которую они попадают раз за разом, крохотными шажочками обходит на поверхности замкнутую кривую.

Пуанкаре понял, что если бы все решения были такими, то можно было бы подобрать подходящий ряд и смоделировать их количественно. Но, проанализировав топологию отображения первого возвращения, он заметил, что все может быть куда сложнее. Две конкретные кривые, связанные динамикой, могут пересечься. Само по себе это не слишком плохо, но если вы пройдете по кривым до того места, где они вновь вернутся на нашу поверхность, то результирующие кривые вновь должны будут пересечься, но в другом месте. Проведите их еще круг, и они снова пересекутся. Мало того: эти новые кривые, полученные передвижением первоначальных кривых, на самом деле не новы. Они представляют собой части первоначальных кривых. Чтобы разобраться в этой топологии, потребовалось немало размышлений — ведь никто раньше подобными играми не занимался. В результате получается очень сложная картина, напоминающая сеть, сплетенную каким-то безумцем: кривые в ней ходят зигзагами туда-обратно, пересекая друг друга, а зигзаги эти сами, в свою очередь, ходят зигзагами туда-обратно и т. д. до любого уровня сложности. В конце концов, Пуанкаре заявил, что зашел в тупик:

«Когда пытаешься описать фигуру, образованную этими двумя кривыми и их бесконечными пересечениями, каждое из которых соответствует дважды асимптотическому решению, то эти пересечения образуют своего рода сеть, паутину или бесконечно тонкое сито… Поражает сложность этой фигуры, которую я даже не пытаюсь нарисовать».

Величайшие математические задачи

Сегодня мы называем его картину гомоклинным («замкнутым на себя») плетением (см. рис. 31). Благодаря новым топологическим идеям, высказанным в 1960-е гг. Стивеном Смейлом, мы сегодня видим в этой структуре старого друга. Главное, что она помогла нам понять, — это то, что динамика хаотична. Хотя в уравнениях нет выраженного элемента случайности, их решения очень сложны и нерегулярны. В чем-то они похожи на по-настоящему случайные процессы. К примеру, существуют орбиты — более того, к этому типу относится большинство орбит, — движение которых в точности имитирует многократное случайное бросание монетки. Открытие того факта, что детерминистская система (т. е. система, будущее которой всецело и однозначно определяется ее текущим состоянием) может тем не менее обладать случайными чертами — замечательное достижение, оно изменило многие области науки. Мы уже не можем считать, что простые правила порождают простое поведение. Речь идет о том, что в обиходе часто называют теорией хаоса, и все это восходит непосредственно к Пуанкаре и его работе на приз короля Оскара.

Ну, почти все. На протяжении многих лет историки математики рассказывали об этом именно так. Но примерно в 1990 г. Джун Бэрроу-Грин обнаружила в недрах Института Миттага-Леффлера в Стокгольме печатный экземпляр работы Пуанкаре; пролистав его, она поняла, что он отличается от того варианта, который можно обнаружить в бесчисленных математических библиотеках по всему миру. Это оказалась официальная пояснительная записка к заявке Пуанкаре на приз, и в ней была ошибка. Подавая работу на конкурс, Пуанкаре упустил из виду хаотические решения. Он заметил ошибку прежде, чем работа была опубликована, доработал ее, выведя все, что было необходимо, — а именно хаос, — и заплатил (надо сказать, больше, чем стоил приз) за то, чтобы оригинальная версия была уничтожена, а в печать пошел исправленный вариант. Но по какой-то причине в архиве Института Миттага-Леффлера сохранился экземпляр первоначально ошибочной версии, хотя сама история забылась, пока Бэрроу-Грин не откопала ее и не опубликовала свое открытие в 1994 г.

Пуанкаре, судя по всему, считал, что хаотические решения несовместимы с разложениями в ряд, но это тоже оказалось ошибкой. Прийти к такому выводу было несложно: ряды казались слишком регулярными, чтобы представлять хаос, — на это способна только топология. Хаос — это сложное поведение, определяемое простыми правилами, так что это умозаключение небесспорно, но структура задачи трех тел определенно не допускает простых решений того рода, которые Ньютон вывел для двух тел. Задача двух тел интегрируема. Это означает, что в уравнениях достаточно сохраняющихся величин, таких как энергия, импульс и момент импульса, для однозначного определения орбиты. «Сохраняющихся» означает, что эти величины не меняют своего значения при движении тел по своим орбитам. Но задача трех тел неинтегрируема.

При всем том решения в виде рядов существуют, однако они не универсальны. Они не годятся для начальных состояний с нулевым моментом импульса — мерой суммарного вращения. Такие состояния бесконечно редки, поскольку нуль — всего лишь одно число среди бесконечного количества действительных чисел. Более того, в этих рядах фигурирует не время как таковое, а корень кубический из времени. Все это выяснил в 1912 г. финский математик Карл Фритьёф Зундман. Нечто аналогичное верно даже для задачи n тел опять же с редкими исключениями. Такой результат получил в 1991 г. Ван Цюдун. Но для системы из четырех или более тел у нас нет никаких достоверных данных о том, при каких именно обстоятельствах ряд не сходится, и мы никак не можем классифицировать эти обстоятельства. Мы знаем, однако, что такая классификация должна получиться очень сложной, потому что существуют решения, в которых все тела убегают в бесконечность или через некоторый конечный промежуток времени начинают колебаться с бесконечной частотой (см. главу 12). Физически такие решения — следствие нашего допущения, что все тела представляют собой точки, хотя и массивные. Математически они подсказывают нам, где искать самые дикие варианты поведения системы.

1 ... 45 46 47 48 49 50 51 52 53 ... 100
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?