📚 Hub Books: Онлайн-чтение книгДомашняяРитм вселенной. Как из хаоса возникает порядок - Стивен Строгац

Ритм вселенной. Как из хаоса возникает порядок - Стивен Строгац

Шрифт:

-
+

Интервал:

-
+
1 ... 89 90 91 92 93 94 95 96 97 ... 112
Перейти на страницу:

В проведенном нами моделировании первые несколько «перемычек» резко сократили величину мира, но оказали весьма незначительное влияние на кластеринг. Из этого следует, что переход к тесному миру практически невозможно заметить на локальном уровне. Если бы вы сами проживали в мире, подвергающемся такому преобразованию, то ничто в вашем ближайшем окружении не говорило бы вам о том, что ваш мир стал маленьким. Количество ваших друзей осталось бы неизменным, а вы сами, возможно, даже не подозревали бы о том, что они могут быть связаны с более широким кругом людей. Человеку, проживающему в таком мире, могло бы казаться, что ему совершенно не угрожает опасность такого тяжелого заболевания, как СПИД – поскольку, например, никто из его половых партнеров не входит в группы повышенного иска, – хотя в действительности такая опасность вполне может подстерегать его в случае появления одной или двух «перемычек».

Самый важный результат такого моделирования заключался в том, что в достаточно широком промежуточном диапазоне переустановленных связей модельные сети были очень кластерированы и, вместе с тем, очень малы. Столь специфическое сочетание было новостью для математики. В традиционных сетях размер и кластеринг идут рука об руку. Произвольные сети малы и плохо кластерированы; напротив, регулярные сети велики и сильно кластерированы. Сети с переустановленными связями умудрялись быть и малыми, и сильно кластерированными одновременно.

Сети с такой парой взаимно противоречивых, на первый взгляд, свойств мы назвали «сетями тесного мира», отдавая дань такому же дуализму, который кажется столь парадоксальным, в связях между людьми: мы движемся в компактных кругах, но в то же время все мы связаны друг с другом на удивление короткими цепочками. Теперь вопрос заключался в следующем: встречается ли столь странная форма сетевой архитектуры в природе, а если встречается, то для чего она может понадобиться?

Наше моделирование показало, что «сети тесного мира» должны иметь широкое распространение в природе, поскольку для этого хватило бы даже очень малой доли «перемычек». Чтобы проверить этот вывод, нам были нужны эмпирические примеры. Найти их оказалось не так-то легко. На любого кандидата нужно было получить исчерпывающую характеристику, схема его связей должна быть известна до последней детали, каждый узел и каждая связь должны быть задокументированы. В противном случае мы не могли бы вычислить кластеринг и среднюю длину пути.

Тогда я вспомнил, что Кьени Бей, одна из студенток, которым я в прошлом году читал курс лекций по теории хаоса, выполнила проект, касающийся энергосистемы западных штатов США. Эта энергосистема представляла собой совокупность из примерно 5000 электростанций, связанных между собой высоковольтными линиями электропередачи, охватывающими штаты к западу от Скалистых гор, а также западные провинции Канады. Кьени и ее консультант Джим Торп поделились своими данными с Дунканом. Эти данные содержали огромный объем подробнейшей информации, которая была очень важна с инженерной точки зрения – максимально допустимое напряжение на линиях электропередачи, классификация узлов как трансформаторов, подстанций или генераторов, – однако мы проигнорировали все за исключением схемы соединений между узлами этой сети. Таким образом, эта сеть превратилась в абстрактную схему из точек, соединенных линиями. Чтобы проверить, является ли такая схема сетью тесного мира, мы сравнили ее кластеринг и среднюю длину пути с соответствующими показателями для произвольной сети с таким же количеством узлов и связей. Как и предполагалось, реальная сеть оказалась почти так же мала, как произвольная, но гораздо сильнее кластерирована. В частности, ее длина пути оказалась лишь в полтора раза больше, чем у произвольной сети, тогда как ее кластеринг оказался в 16 раз большим.

Решив не ограничивать свои исследования лишь технологическими сетями, мы обратили свои взоры к нервной системе крошечного червя под названием C. elegans[236]. Об этом скромном создании – прозрачная нематода длиной около 1 миллиметра, обитающая в почве – нам известно гораздо больше, чем о каком-либо другом животном, в том числе о мушке-дрозофиле (любимый объект исследований генетиков) и мыши (любимый объект исследований онкологов). Каждая из 959 клеток этого червя исследована на каждой стадии своего развития, начиная с момента ее зарождения и заканчивая смертью. Последовательность всего генома этого червя была установлена еще в 1998 г. Каким бы сложным этот организм ни показался вам, его исследование позволило выявить несколько фундаментальных клеточных процессов, начиная с отмирания клетки и заканчивая выработкой сигналов клетками и управлением нервными путями, причем все эти процессы поначалу были открыты биологами, специализирующимися на изучении червей, а впоследствии оказалось, что исследование этих процессов важно и для человека. Именно поэтому червю C. elegans уделяется столь большое внимание. Возможно, это именно тот простейший организм, многие биологические процессы в котором очень важны для жизни человека.

С точки зрения нашего исследования, привлекательность червя C. elegans заключалась в том, что его нервная система была полностью представлена в схематическом виде[237] – достоинство, которым не обладал ни один другой организм. Вообще говоря, схема соединений его 302 нейронов имелась на дискете в цифровом виде[238]. Как и в случае с энергосистемой, мы пренебрегли подробностями, которые могли показаться самыми существенными специалисту по изучению червей. Мы рассматривали все нейроны как идентичные друг другу (хотя биологи различают 118 разных классов нейронов) и считали два нейрона соединенными между собой, если они были связаны друг с другом либо синапсом (химическое соединение), либо нексусом (электрическое соединение).

Результирующая абстрактная сеть опять-таки оказалась сетью тесного мира. Средняя длина пути в ней оказалась лишь на 18 % большей, чем средняя длина пути соответствующей произвольной сети, тогда как ее кластеринг оказался в шесть раз большим. Неясно было, что все это означает. Вполне могло быть, что столь короткая средняя длина пути облегчает быструю передачу сигналов в организме этого существа, тогда как высокий кластеринг, возможно, отражает наличие контуров обратной связи и модульной структуры в его нервной системе.

Две радикально разные сети, энергосистема и нервная система: одна из них создана человеком, а другая – результат долгой эволюции. Одна из них относится к числу крупнейших технологических систем в мире и представляет собой обширную сеть синхронизированных электрогенераторов, связанных электрическими кабелями, общая протяженность которых составляет сотни тысяч миль. Другая сеть – микроскопическая ажурная ткань, результат миллионов лет естественного отбора, тончайшее кружево, вплетенное в организм червя. Тем не менее, несмотря на указанные различия, их архитектуры на удивление схожи между собой. Обе эти сети почти так же малы, как это только возможно. Обе чрезвычайно структурированы и, несомненно, не произвольны. Правда, наши аппроксимации не позволяли правильно трактовать эти результаты: архитектура обеих этих сетей тесного мира могла не иметь никакого отношения к выполняемым ими функциям и, следовательно, могла не иметь в данном случае никакого значения. Только время могло бы дать ответ на этот вопрос. Но на тот момент совпадение казалось весьма соблазнительным.

1 ... 89 90 91 92 93 94 95 96 97 ... 112
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?